Advertisement

Environmental Earth Sciences

, 75:1253 | Cite as

Developing a structural and conceptual model of a tectonically limited karst aquifer: a hydrogeological study of the Hastenrather Graben near Aachen, Germany

  • David Burs
  • Johanna Bruckmann
  • Thomas R. Rüde
Thematic Issue
  • 281 Downloads
Part of the following topical collections:
  1. Water in Germany

Abstract

Interdisciplinary and comprehensive field work combining hydraulic and geophysical experiments yielded an improved understanding of the fractured and partly karstified Kohlenkalk aquifer in the Hastenrather Graben near Aachen, Germany. The aquifer is used for drinking water production and located in a geologically and tectonically complex area shaped by various tectonic events. A workflow which combines implicit 3D structural modeling with hydrogeological conceptual model building enabled determining hydrogeological boundary conditions at specific boundary cross sections, calculating the aquifer volume, and analyzing the hydraulic influence of faults on the aquifer system. Electrical resistivity tomography, seismic refraction tomography, well logging, and a coring campaign combined with available maps and additional literature research served as basis for the setup of the 3D structural model. This 3D model comprises all important structural elements, including the fault system, deep folded structures, and thrusts in the graben center. Integration of geological structure and hydraulic studies yielded a conceptual model of the hydrogeology, describing the Kohlenkalk aquifer and neighboring layers. Hydraulic conductivity of the aquifer system varies between 6.0 × 10−7 and 6.4 × 10−4 m s−1 with a decreasing trend from the NE graben shoulder to the graben center. Analysis of piezometric heads and resulting groundwater contour maps indicated four hydrogeological units which are partly limited by faults. Data on groundwater recharge as well as anthropogenic influences on the groundwater resources are part of the conceptual model.

Keywords

Hydrogeological model 3D structural modeling Karst aquifer Groundwater resources in Germany 

Notes

Acknowledgments

We kindly acknowledge data provided by energie und wasser vor Ort GmbH (enwor GmbH, Roetgen), ahu AG Wasser Boden Geomatik (ahu AG, Aachen), the Geological Survey of North Rhine-Westphalia (GD NRW, Krefeld), the district government (Cologne), and the Erftverband (Bergheim). The authors express their thanks to Dipl. Geol. Paul M. Kirch (enwor GmbH) and Dr. Martin Salamon (GD NRW) for supporting our work with advice and valuable discussions and to Professor Dr. Christoph Clauser for his constructive review of an earlier version of our manuscript. Further, we thank Rhea von Bülow, Dominique Knapp, Andreas Vogel, Julian Taschowsky, and Richard Hoffmann for contributing to this work in the framework of their diploma, master, and bachelor theses. We also thank all students and colleagues who helped during the different field work campaigns and two anonymous reviewers for their constructive comments which improved the manuscript considerably. This study is part of the project “Water flow and permeability distribution in a tectonically limited hard-rock aquifer” funded by the Helmholtz Association and performed within the Centre for High-Performance Scientific Computing in Terrestrial Systems (HPSC TerrSys) of the Geoverbund ABC/J, Germany.

References

  1. Abusaada M, Sauter M (2013) Studying the flow dynamics of a karst aquifer system with an equivalent porous medium model. Groundwater 51:641–650. doi: 10.1111/j.1745-6584.2012.01003.x Google Scholar
  2. Aeschbach-Hertig W, Gleeson T (2012) Regional strategies for the accelerating global problem of groundwater depletion. Nat Geosci. doi: 10.1038/NGEO1617 Google Scholar
  3. ahu AG (2005) Gutachten zur Vorbereitung des wasserrechtlichen Genehmigungsantrages für die Wassergewinnung Hastenrather Graben der enwor—energie und wasser vor ort GmbH—Phase 1: Grundlagenermittlung. ahu AG, Aachen (commissioned by enwor GmbH)Google Scholar
  4. ahu AG (2006) Risikostudie für die Wasserschutzgebiete der WGA Hastenrather Graben und Mariaschacht Nachtigällchen—Phase 2: Ermittlung der Schutzfunktion der Deckschichten und des Grundwasserverschmutzungsrisikos. ahu AG, Aachen (commissioned by enwor GmbH)Google Scholar
  5. ahu AG (2007) Auswertung zum Betriebspumpversuch Wassergewinnung Hastenrather Graben. ahu AG, Aachen (commissioned by enwor GmbH)Google Scholar
  6. ahu AG (2009) Erläuterungsbericht—Wasserrechtlicher Bewilligungsantrag WGA Hastenrather Graben. ahu AG, Aachen (commissioned by enwor GmbH)Google Scholar
  7. ahu AG (2014) Erläuterungsbericht zum wasserrechtlichen Bewilligungsantrag WGA Hastenrather Graben der enwor GmbH. ahu AG, Aachen (commissioned by enwor GmbH)Google Scholar
  8. Batu V (1998) Aquifer hydraulics—a comprehensive guide to hydrogeologic data analysis. Wiley, New YorkGoogle Scholar
  9. Becker S, Nguyen HT, Nollet S, Fernandez-Steeger TM, Laux D, Hilgers C (2014) Methods to analyse fracture orientation patterns in a Lower Carboniferous carbonate reservoir analogue in the Voreifel, Germany. German J Geosci 165(3):319–330. doi: 10.1127/1860-1804/2014/0078 Google Scholar
  10. Betancur T, Palacio CA, Escobar JF (2012) Conceptual models in hydrogeology, methodology and results. In: Kazemi GA (ed) Hydrogeology—a global perspective. InTech, pp 203–222. http://www.intechopen.com/books/hydrogeology-a-global-perspective/conceptual-models-in-hydrogeology-methodologies-and-results. Retrieved 22 April 2016
  11. Bogena H, Kunkel R, Schöbel T, Schrey HP, Wendland F (2003) Die Grundwasserneubildung in Nordrhein-Westfalen. Schriften des Forschungszentrums Jülich, Reihe Umwelt/Environment Band/Volume 37, Forschungszentrum Jülich GmbH, JülichGoogle Scholar
  12. Borghi A, Renard P, Courrioux G (2015) Generation of 3D spatially variable anisotropy for groundwater flow simulations. Groundwater 53(6):955–958. doi: 10.1111/gwat.12295 CrossRefGoogle Scholar
  13. Brouyere S, Carabin G, Dassargues A (2004) Climate change impacts on groundwater resources: modelled deficits in a chalky aquifer, Geer basin, Belgium. Hydrogeol J 12:123–134. doi: 10.1007/s10040-003-0293-1 CrossRefGoogle Scholar
  14. Calcagno P, Chilès JP, Courrioux G, Guillen A (2008) Geological modelling from field data and geological knowledge. Phys Earth Planet Inter 171(1):147–157. doi: 10.1016/j.pepi.2008.06.013 CrossRefGoogle Scholar
  15. Calcagno P, Courrioux G, Guillen A, McInerney P, Stephensen D (2013) GeoModeller user manual—3D GeoModeller reference. Bureau de Recherches Géologiques et Minières (BRGM), Orléans, France, and Desmond Fitzgerald & Associates Pty Ltd, Melbourne, Australia, http://www.intrepid-geophysics.com/ig/uploads/manuals/documentation_pdf_geomodeller/pdf_en/GeoModeller_Reference.pdf. Retrieved 14 April 2016
  16. Caumon G, Collon-Drouaillet P, Carlier Le, de Veslud C, Viseur S, Sausse J (2009) Surface-based 3D modeling of geological structures. Math Geosci 41:927–945. doi: 10.1007/s11004-009-9244-2 CrossRefGoogle Scholar
  17. Chatziliadou M (2009) Rb–Sr Alter und Sr–Pb Isotopencharakteristik von Gangmineralisationen in paläozoischen Gesteinen am Nordrand des linksrheinischen Schiefergebirges (Raum Stolberg-Aachen-Kelmis) und Vergleich mit den rezenten Thermalwässern von Aachen-Burtscheid. Dissertation, RWTH Aachen UniversityGoogle Scholar
  18. Chiles JP, Aug C, Guillen A, Lees T (2004) Modelling the geometry of geological units and its uncertainty in 3D from structural data: the potential-field method. In: Proceedings of international symposium on orebody modelling and strategic mine planning, Perth, Australia, vol 22Google Scholar
  19. Clauser C (ed) (2003) Numerical simulation of reactive flow in hot aquifers—SHEMAT and Processing SHEMAT. Springer, BerlinGoogle Scholar
  20. Daly D, Dassargues A, Drew D, Dunne S, Goldscheider N, Neale S, Popescu IC, Zwahlen F (2002) Main concepts of the “European approach” to karst-groundwater-vulnerability assessment and mapping. Hydrogeol J 10:340–345. doi: 10.1007/s10040-001-0185-1 CrossRefGoogle Scholar
  21. Diersch H-JG (2014) Feflow—finite element modeling of flow, mass and heat transport in porous and fractured media. Springer, BerlinGoogle Scholar
  22. Dietrich P, Helmig R, Sauter M, Hötzl H, Köngeter J, Teutsch G (eds) (2005) Flow and transport in fractured porous media. Springer, BerlinGoogle Scholar
  23. Doerfliger N, Jeannin P-Y, Zwahlen F (1999) Water vulnerability assessment in karst environments: a new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method). Environ Geol 39(2):165–176. doi: 10.1007/s002540050446 CrossRefGoogle Scholar
  24. Deutscher Verein des Gas- und Wasserfaches e.V. DVGW (1997) Planung, Durchführung und Auswertung von Pumpversuchen bei der Wassererschließung. BonnGoogle Scholar
  25. Ford D, Williams P (2007) Karst hydrogeology and geomorphology. Wiley, ChichesterCrossRefGoogle Scholar
  26. Frank T, Tertois AL, Mallet JL (2007) 3D-reconstruction of complex geological interfaces from irregularly distributed and noisy point data. Comput Geosci 33(7):932–943. doi: 10.1016/j.cageo.2006.11.014 CrossRefGoogle Scholar
  27. Geobasis NRW (2013a) Geologische Karte 1:25000. © Geowissenschaftliche Daten: Geologischer Dienst NRW, Krefeld, 84/2013Google Scholar
  28. Geobasis NRW (2013b) Digitales Geländemodell (DGM1) und Deutsche Grundkarte 1:5000 (DGK5). Geobasisdaten der Kommunen und des Landes NRW © Geobasis NRW 2013, Bezirksregierung KölnGoogle Scholar
  29. Geobasis NRW (2015) Bohrprofile. © Geowissenschaftliche Daten: Geologischer Dienst NRW, Krefeld, 070/2015Google Scholar
  30. Ghasemizadeh R, Hellweger F, Butscher C, Padilla I, Vesper D, Field M, Alshawabkeh A (2012) Review: groundwater flow and transport modeling of karst aquifers, with particular reference to the North Coast Limestone aquifer system of Puerto Rico. Hydrogeol J 20:1441–1461. doi: 10.1007/s10040-012-0897-4 CrossRefGoogle Scholar
  31. GLA (1999) Im Grunde Wasser—Hydrogeologie in Nordrhein-Westfalen. Krefeld, Geologisches Landesamt NRW, p 24Google Scholar
  32. Goldscheider N (2005) Karst groundwater vulnerability mapping: application of a new method in the Swabian Alb, Germany. Hydrogeol J 13:555–564. doi: 10.1007/s10040-003-0291-3 CrossRefGoogle Scholar
  33. Goldscheider N, Drew D (2007) Methods in karst hydrogeology. Taylor & Francis Group, LondonGoogle Scholar
  34. Hartmann A, Goldscheider N, Wagener T, Lange J, Weiler M (2014) Karst water resources in a changing world: review of hydrological modeling approaches. Rev Geophys 52:218–242. doi: 10.1002/2013RG000443 CrossRefGoogle Scholar
  35. Herbig HG, Salamon M (2009) Stratigraphie und Fazies des späten Oberdevons und Karbons am Südost-Rand des Brabanter Massivs (Aachen/westliches Deutschland und Vesdres-Massiv/Ostbelgien). Tagung der Subkommission für Karbon-Stratigraphie, Stolberg-Vicht. Deutsche Stratigraphische KommissionGoogle Scholar
  36. Hillier MJ, Schetselaar EM, de Kemp EA, Perron G (2014) Three-dimensional modelling of geological surfaces using generalized interpolation with radial basis functions. Math Geosci 46(8):931–953. doi: 10.1007/s11004-014-9540-3 CrossRefGoogle Scholar
  37. Hoffmann R (2014) Bestimmung der grundwasserhydraulischen Heterogenität in Festgesteinen des Hastenrather Grabens (Region Aachen) mit Hilfe von Kurzpumpversuchen. Bachelor Thesis. Institute of Hydrogeology, RWTH Aachen University (unpublished)Google Scholar
  38. Holman IP (2006) Climate change impacts on groundwater recharge-uncertainty, shortcomings and the way forward? Hydrogeol J 14(5):637–647. doi: 10.1007/s10040-005-0467-0 CrossRefGoogle Scholar
  39. Jakeman AJ, Barreteau O, Hunt RJ, Rinaudo J-D, Ross A (eds) (2016) Integrated groundwater management—concepts, approaches and challenges. Springer, Berlin. doi: 10.1007/978-3-319-23576-9 Google Scholar
  40. Jorand R, Clauser C, Marquart G, Pechnig R (2015) Statistically reliable petrophysical properties of potential reservoir rocks for geothermal energy use and their relation to lithostratigraphy and rock composition: the NE Rhenish Massif and the Lower Rhine Embayment (Germany). Geothermics 53:413–428CrossRefGoogle Scholar
  41. Jung A, Fenwick DH, Caers J (2013) Training image-based scenario modeling of fractured reservoirs for flow uncertainty quantification. Comput Geosci 17:1015–1031. doi: 10.1007/s10596-013-9372-0 CrossRefGoogle Scholar
  42. Kasig W (1980) Zur Geologie des Aachener Unterkarbons (Linksrheinisches Schiefergebirge, Deutschland)—Stratigraphie, Sedimentologie und Paläogeographie des Aachener Kohlenkalks und seine Bedeutung für die Entwicklung der Kulturlandschaft im Aachener Raum. Genehmigte Habilitationsschrift, Fakultät für Bergbau und Hüttenwesen, RWTH Aachen University, pp 253Google Scholar
  43. Kiraly L (2003) Karstification and groundwater flow. Speleogenesis Evolut Karst Aquifers 1:1–24Google Scholar
  44. Klostermann J (1992) Das Quartär der Niederrheinischen Bucht—Ablagerungen der letzten Eiszeit am Niederrhein. Geologisches Landesamt Nordrhein-Westfalen, KrefeldGoogle Scholar
  45. Kløve B, Ala-Aho P, Bertrand G, Gurdak JJ, Kupfersberger H, Kværner J, Muotka T, Mykrä H, Preda H, Rossi P, Uvo CB, Velasco E, Pulido-Velazquez M (2014) Climate change impacts on groundwater and dependent ecosystems. J Hydrol 518:250–266. doi: 10.1016/j.jhydrol.2013.06.037 CrossRefGoogle Scholar
  46. Knapp G (1978) Erläuterungen zur Geologischen Karte der nördlichen Eifel 1:100.000, 2nd ed. Geologisches Landesamt Nordrhein-Westfalen, KrefeldGoogle Scholar
  47. Knapp D (2013) Bohrlochgeophysikalische Erkundung des Hastenrather Grabens. Bachelor Thesis, Institute for Applied Geophysics and Geothermal Energy, RWTH Aachen University (unpublished)Google Scholar
  48. Krahn L, Friedrich G, Gussone R, Scheps V (1986) Zur Blei-Zink-Vererzung in Carbonatgesteinen des Aachen-Stolberger Raums. Fortschr Geol Rheinld Westf 34:133–157Google Scholar
  49. Lajaunie C, Courrioux G, Manuel L (1997) Foliation fields and 3D cartography in geology: principles of a method based on potential interpolation. Math Geol 29(4):571–584CrossRefGoogle Scholar
  50. Larocque M, Banton O, Ackerer P, Razack M (1999) Determining karst transmissivities with inverse modeling and an equivalent porous media. Ground Water 37(6):897–903. doi: 10.1111/j.1745-6584.1999.tb01189.x CrossRefGoogle Scholar
  51. Long JCS, Remer JS, Wilson CR, Witherspoon PA (1982) Porous media equivalents for networks of discontinuous fractures. Water Resour Res 18(3):645–658. doi: 10.1029/WR018i003p00645 CrossRefGoogle Scholar
  52. Mackay DM, Cherry JA (1989) Groundwater contamination: pump-and-treat remediation. Environ Sci Technol 23(6):630–636. doi: 10.1021/es00064a001 CrossRefGoogle Scholar
  53. Malard A, Jeannin P-Y, Sinreich M, Weber E, Vouillamoz J, Eichenberger U (2014) Praxisorientierter Ansatz zur kartographischen Darstellung von Karst-Grundwasserressourcen. Grundwasser 19(4):237–249. doi: 10.1007/s00767-014-0271-7 CrossRefGoogle Scholar
  54. Mallet JL (1992) Discrete smooth interpolation in geometric modelling. Comput Aided Des 24(4):178–191. doi: 10.1016/0010-4485(92)90054-E CrossRefGoogle Scholar
  55. McInerney P, Guillen A, Courrioux G, Calcagno P, Lees T (2005) Building 3D geological models directly from the data? A new approach applied to Broken Hill, Australia. Digit Mapp Tech 5:119–130Google Scholar
  56. Meyer W (1994) Geologie der Eifel. Schweizerbart, StuttgartGoogle Scholar
  57. Moench AF (1984) Double-porosity models for a fissured groundwater reservoir with fracture skin. Water Resour Res 20(7):831–846. doi: 10.1029/WR020i007p00831 CrossRefGoogle Scholar
  58. Molénat J, Gasceul-Odoux C (2002) Modelling flow and nitrate transport in groundwater for the prediction of water travel times and of consequences of land use evolution on water quality. Hydrol Process 16:479–492. doi: 10.1002/hyp.328 CrossRefGoogle Scholar
  59. Oncken O, von Winterfeld C, Dittmar U (1999) Accretion of a rifted passive margin: the Late Paleozoic Rhenohercynian fold and thrust belt (Middle European Variscides). Tectonics 18(1):75–91. doi: 10.1029/98TC02763 CrossRefGoogle Scholar
  60. Paus H (1933) Messungen an der Aachener Sandgewand. Dissertation, RWTH Aachen UniversityGoogle Scholar
  61. Pirot G, Renard P, Huber E, Straubhaar J, Huggenberger P (2015) Influence of conceptual model uncertainty on contaminant transport forecasting in braided river aquifers. J Hydrol 531:124–141. doi: 10.1016/j.jhydrol.2015.07.036 CrossRefGoogle Scholar
  62. Rath V, Wolf A, Bücker HM (2006) Joint three-dimensional inversion of coupled groundwater flow and heat transfer based on automatic differentiation: sensitivity calculation, verification, and synthetic examples. Geophys J Int 167(1):453–466. doi: 10.1111/j.1365-246X.2006.03074.x CrossRefGoogle Scholar
  63. Reissner B (1990) Stratigraphische und Fazielle Untersuchungen im Mittel- und Oberdevon des Aachener Raumes, Nordeifel, Rheinisches Schiefergebirge. Dissertation, RWTH Aachen UniversityGoogle Scholar
  64. Ribbert KH (2010) Geologie im Rheinischen Schiefergebirge—Teil 1: Nordeifel. Geologischer Dienst Nordrhein-Westfalen, KrefeldGoogle Scholar
  65. Royse KR, Kessler H, Robins NS, Hughes AG, Mathers SJ (2010) The use of 3D geological models in the development of the conceptual groundwater model. Z dt Ges Geowiss 161(2):237–249. doi: 10.1127/1860-1804/2010/0161-0237 Google Scholar
  66. Salamon M (2008) Stratigraphy and tectonics of the Aachen-Region—results of a recent mapping project of the Geological Survey of Northrhine-Westfalia. International Conference and 160th annual meeting of the Deutsche Gesellschaft für Geowissenschaften e. V. (DGG) and 98th annual meeting of the Geologische Vereinigung e. V. (GV), 29 Sept–2 Oct 2008, Aachen, Germany, Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften e.V. 60Google Scholar
  67. Scanlon BR, Mace RE, Barrett ME, Smith B (2003) Can we simulate regional groundwater flow in a karst system using equivalent porous media models? Case study, Barton Springs Edwards aquifer, USA. J Hydrol 276:137–158. doi: 10.1016/S0022-1694(03)00064-7 CrossRefGoogle Scholar
  68. Schönwiese C-D (2008) Klimatologie. Ulmer, StuttgartGoogle Scholar
  69. Schröder E, Schmidt W, Quitzow HW (1956) Geologische Heimatkunde des Dürener Landes. Komissions-Verlag, Buchhandlung Dietrich Krüger, DürenGoogle Scholar
  70. Shiklomanov IA, Rodda JC (2003) World water resources at the beginning of the twenty-first Century. Cambridge University Press, CambridgeGoogle Scholar
  71. Steingrobe B (1990) Fazieseinheiten aus dem Aachen-Erkelenzer Oberkarbonvorkommen mit besonderer Berücksichtigung des Inde-Synklinoriums. Dissertation, RWTH Aachen UniversityGoogle Scholar
  72. Taschowsky J (2013) Detailkartierung der Deckenüberschiebung im Hastenrather Graben (Eschweiler). Bachelor thesis, Institute of Hydrogeology, RWTH Aachen University (unpublished)Google Scholar
  73. Teutsch G (1993) An extended double-porosity concept as a practical modelling approach for a karstified terrain. In: Hydrogeological processes in Karst Terranes (Proceedings of the Antalya Symposium and Field Seminar, October 1990). IAHS 207Google Scholar
  74. Theis CV (1935) The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage. Am Geophys Union Trans 16:519–524CrossRefGoogle Scholar
  75. Turk J, Malard A, Jeannin PY, Vouillamoz J, Masini J, Petric M, Gabrovsek F, Ravbar N, Slabe T (2013) Interpretation of hydrogeological functioning of a high karst plateau using the KARSYS approach: the case of Trnovsko-Banjska Planota (Slovenia). Acta Carsologica 42(1):61–74CrossRefGoogle Scholar
  76. van den Berg MW (1994) Neotectonics of the Roer Valley rift system. Style and rate of crustal deformation inferred from syn-tectonic sedimentation. Geol Mijnbouw 73:143–156Google Scholar
  77. Vanneste K, Verbeeck K, Camelbeeck T (2012) A model of composite seismic sources for the Lower Rhine Graben, Northwest Europe. B Seismol Soc Am 103(2A):984–1007. doi: 10.1785/0120120037 CrossRefGoogle Scholar
  78. Vaux H (2011) Groundwater under stress: the importance of management. Environ Earth Sci 62:19–23. doi: 10.1007/s12665-010-0490-x CrossRefGoogle Scholar
  79. Vogel A (2006) Geologie und Hydrogeologie im Umfeld der Wassergewinnung “Hastenrather Graben”. Diploma mapping. Institute of Hydrogeology, RWTH Aachen University (unpublished)Google Scholar
  80. Vogel A (2007) Hydrogeologische Charakterisierung der Grundwasservorkommen im Bereich „Hastenrather Graben“ bei Stolberg/Aachen. Diploma Thesis. Institute of Hydrogeology, RWTH Aachen University (unpublished)Google Scholar
  81. von Bülow R (2013) Aquifer characterization with electrical resistivity tomography (ERT) and seismic refraction tomography (SRT), Hastenrather Graben, Eschweiler, Germany. Master Thesis, Institute for Applied Geophysics and Geothermal Energy, RWTH Aachen University (unpublished)Google Scholar
  82. Walter R (2007) Geologie von Mitteleuropa. Schweizerbart, StuttgartGoogle Scholar
  83. Walter R (2010) Aachen und südliche Umgebung—Nordeifel und Nordost-Ardennen. Sammlung Geologischer Führer, vol 100, Gebr. Bornträger, Berlin/StuttgartGoogle Scholar
  84. Warren JE, Root PJ (1963) The behavior of naturally fractured reservoirs. Soc Petrol Eng J 3:245–255. doi: 10.2118/426-PA CrossRefGoogle Scholar
  85. Wellmann JF, Regenauer-Lieb K (2012) Uncertainties have a meaning: information entropy as a quality measure for 3-D geological models. Tectonophysics 526:207–2016. doi: 10.1016/j.tecto.2011.05.001 CrossRefGoogle Scholar
  86. Wimmer G, Leppig B, Müller B, Dietz T (2003) Hydrologische Karte von Nordrhein-Westfalen, Blatt 5203 Stolberg. Landesumweltamt NRWGoogle Scholar
  87. Worthington SRH (2009) Diagnostic hydrogeologic characteristics of a karst aquifer (Kentucky, USA). Hydrogeol J 17:1665–1678. doi: 10.1007/s10040-009-0489-0 CrossRefGoogle Scholar
  88. Worum G, Michon L, van Balen RT, van Wees J-D, Cloethingh S, Pagnier H (2005) Pre-Neogene controls on present-day fault activity in the West Netherlands Basin and Roer Valley Rift System (southern Netherlands): role of variations in fault orientation in a uniform low-stress regime. Quat Sci Rev 24:473–488. doi: 10.1016/j.quascirev.2004.02.020 CrossRefGoogle Scholar
  89. Wu Q, Xu H, Zou X (2005) An effective method for 3-D geological modelling with multisource data integration. Comput Geosci 31:35–43. doi: 10.1016/j.cageo.2004.09.005 CrossRefGoogle Scholar
  90. Wu Y, Wang W, Toll M, Alkhoury W, Sauter M, Kolditz O (2011) Development of a 3D groundwater model based on scarce data: the Wadi Kafrein catchment/Jordan. Environ Earth Sci 64:771–785. doi: 10.1007/s12665-010-0898-3 CrossRefGoogle Scholar
  91. Wycisk P, Hubert T, Gossel W, Neumann Ch (2009) High-resolution 3D spatial modelling of complex geological structures for an environmental risk assessment of abundant mining and industrial megasites. Comput Geosci 35:165–182. doi: 10.1016/j.cageo.2007.09.001 CrossRefGoogle Scholar
  92. Ziegler PA (1992) European Cenozoic rift system. Tectonophysics 208:91–111. doi: 10.1016/0040-1951(92)90338-7 CrossRefGoogle Scholar
  93. Zijerveld L, Stephenson R, Cloetingh S, Duin E, van den Berg MW (1992) Subsidence analysis and modelling of the Roer Valley Graben (SE Netherlands). Tectonophysics 208:159–171. doi: 10.1016/0040-1951(92)90342-4 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • David Burs
    • 1
  • Johanna Bruckmann
    • 2
  • Thomas R. Rüde
    • 1
  1. 1.Institute of HydrogeologyRWTH Aachen UniversityAachenGermany
  2. 2.Institute for Applied Geophysics and Geothermal Energy, E.ON Energy Research CenterRWTH Aachen UniversityAachenGermany

Personalised recommendations