Advertisement

Environmental Earth Sciences

, 75:1215 | Cite as

Assessment of human effects through phosphorus partitioning in sediments from two catchment basins around Guanabara Bay, SE Brazil

  • Carlos Marclei Arruda RangelEmail author
  • José Antônio Baptista Neto
  • Priscilla Soares de Oliveira
  • Luciana Gomes Lima
  • Estefan Monteiro da Fonseca
Original Article
  • 149 Downloads

Abstract

Geochemical analyses of sediment samples collected along the fluvial systems of the Guapi-Macacu River and the Mangue Channel hydrographic basins, which flow into a distinct portion of the Guanabara Bay, show the presence of different anthropogenic impacts in the area. The Guanabara Bay is located inside the metropolitan area of Rio de Janeiro, which is one of the most urbanized and industrialized regions in Brazil. Consequently, this estuarine system is subjected to intense degradation processes due to the eutrophication of the hydrographic systems around the bay. This study aims to investigate the influence of the seasonal variations of environmental factors on the fractionation of phosphorus in the hydrographic basins of the Guapi-Macacu River and the Mangue Channel. The geochemical features of the water and sediments were analyzed, and the interactions between these features, the physicochemical parameters, and the sediment properties of the two basins were identified. Phosphorus fractionation revealed that the various forms of phosphorus displayed distinct behaviors. In the Mangue Channel Basin, the main phosphorus fraction detected during the winter and summer was associated with iron, indicating a reductive environment rich in organic matter (i.e., a polluted environment). In the basin of the Guapi-Macacu River during the winter, the residual phase (P-Re) was predominantly detected, whereas the metallic phase (P-Me) prevailed during the summer. The fractions associated with the physicochemical parameters did not vary significantly in this region, which implies oxidized and natural conditions.

Keywords

Phosphorus Fractionation Sediments Guanabara Bay 

References

  1. Aguiar VMC, Braga ES (2007) Seasonal and tidal variability of phosphorus along a salinity gradient in the heavily polluted estuarine system of Santos/São Vicente—São Paulo, Brazil. Mar Pollut Bull 54:464–488CrossRefGoogle Scholar
  2. Aguiar VMC, Baptista Neto JA, Rangel CMA (2011) Eutrophication and hypoxia in four streams discharging in Guanabara Bay, RJ, Brazil, a case study. Mar Pollut Bull 62:915–1919CrossRefGoogle Scholar
  3. Amador ES (1997) Baia de Guanabara e ecossistemas periféricos - Homem e Natureza. Retroarte Gráfica e Editora, Rio de Janeiro, p 539Google Scholar
  4. Aviles A, Rodero J, Amores V, Vicente I, Rodriguez MI, Niell FX (2006) Factors controlling phosphorus speciation in a Mediterranean basin (River Guadalfeo, Spain). J Hydrol 331:396–408CrossRefGoogle Scholar
  5. Aydin A, Özgen E, Sülin TA (2005) Novel method for the spectrophotometric determination of nitrite in water. Talanta 66:1181–1186CrossRefGoogle Scholar
  6. Baptista Neto JA, Peixoto TCS, Smith B, McAllister J, Patchineelam SM, Patchineelam S, Fonseca EM (2013) Geochronology and heavy metal flux to Guanabara bay, Rio de Janeiro state: a preliminary study. An Acad Bras Ciênc 85:317–1327CrossRefGoogle Scholar
  7. Barcellos RL, Berbel GBB, Braga ES, Furtado VV (2005) Distribuição e características do fósforo sedimentar no sistema estuarino lagunar da cananéia-iguapé, estado de são paulo, Brasil. Geochim Bras 19:022–036Google Scholar
  8. Baumgarten MGZ, Nienchesk LFH, Veeck L (2001) Nutrientes na coluna d’água e na água intersticial de sedimentos de uma enseada rasa estuarina com aportes de origem antrópica (RS- Brasil). Atlântica, Rio Grande 23:101–116Google Scholar
  9. Bledsoe EL, Philips EJ (2000) Relationships between phytoplankton standing crop and physical, chemical, and biological gradients in the Suwannee river and plume region, USA. Estuaries 23:458–473CrossRefGoogle Scholar
  10. Borges AC, Sanders CJ, Santos HLR, Araripe DR, Machado W, Patchineelam SR (2009) Eutrophication history of Guanabara bay (SE-Brazil) recorded by phosphorus flux to sediments from degraded mangrove area. Baseline Mar Pollut Bull 58:1739–1765CrossRefGoogle Scholar
  11. Brepohl DC (2000) Fósforo: Intercâmbio entre a água e o sedimento de uma enseada rasa estuarina com aporte antrópico no estuário da lagoa dos patos (RS-Brasil). Dissertação de Mestrado. Fundação Universidade Federal do Rio Grande, Rio Grande do SulGoogle Scholar
  12. Carreira RS, Wagener ALR (1998) Speciation of sewage derived P in coastal sediments from Rio de Janeiro. Braz Mar Pollut Bull 36:818–827CrossRefGoogle Scholar
  13. Champion M, Currie DJ (2000) Phosphorus-chlorophyll relationship in lakes, rivers and estuaries. Verh Inter Ver Limnol 27:1986–1989Google Scholar
  14. Chapman D, Kimstach V (1996) Selection of water quality variables. In: Chapman D (ed) Water quality assessment: a guide to the use of biota, sediments and water in environmental monitoring. UNESCO/WHO/UNEP, Londres Cap 3Google Scholar
  15. Coelho JP, Flindt MR, Jensen HS, Lillebo AI, Pardal MA (2004) Phosphorus speciation and availability in intertidal sediments of a temperature estuary: relation to eutrophication and annual P-fluxes. Estuar Coast Shelf Sci 61:583–590CrossRefGoogle Scholar
  16. Duan S, Bianchi T (2006) Seasonal changes in the abundance and composition of plant pigments in particulate Organic Carbon in the Lower Mississippi and Pearl Rivers. Estuaries Coasts 29(3):427–442CrossRefGoogle Scholar
  17. EMBRAPA (1999) Manual de Análises Químicas. Plantas e Fertilizantes, BrasíliaGoogle Scholar
  18. Favoretto CM, Gonçalves D (2008) Determinação da humificação da matéria orgânica de um latossolo e de suas frações organo-minerais. Quim Nova 31(8):1994–1996CrossRefGoogle Scholar
  19. FEEMA - Fundação Estadual de Engenharia do Meio Ambiente (1998) Qualidade da água da Baía de Guanabara – 1990–1997. Secretaria do Estado do Meio Ambiente, Rio de JaneiroGoogle Scholar
  20. Folk RL, Ward WC (1957) Brazos river Bar: a study in the significance of grain size parameters. J Sediment Pet 27(1):3–26CrossRefGoogle Scholar
  21. Froehner S, Martins RF (2008) Avaliação da composição química de sedimentos do rio barigüi na região metropolitana de Curitiba. Quim Nova 31(8):2020–2026CrossRefGoogle Scholar
  22. Gailladert J, Dupre B, Allegre CJ (1999) Geochemistry of large river suspended sediments: silicate weathering or recycling tracer? Geochemica et Cosmochimica Acta 63:4037–4051CrossRefGoogle Scholar
  23. Grasshoff K, Ehrhardt M, Kreamling K (1983) Methods of seawater analysis. Weihein Verlag, ChemieGoogle Scholar
  24. Hanrahan G, Salmassi TM, Khachikian CS, Foster KL (2005) Reduced inorganic phosphorus in the natural environment: significance, speciation and determination. Talanta 66:435–444CrossRefGoogle Scholar
  25. Huaxin W, Presley BJ, Armstrong D (1994) Distribution of sedimentary phosphorus in Gulf of Mexico Estuaries. Mar Environ Res 37:375–392CrossRefGoogle Scholar
  26. Jarvie HP, Withers PJA, Neal C (2002) Review of robust measurement of phosphorus in river water: sampling, storage, fractionation and sensitivity. Hydrol and Earth Syst Sci 6:113–132CrossRefGoogle Scholar
  27. Jin X, Wang S, Pang Y, Wu F (2006) Phosphorus fractions and effect of pH on the phosphorus release of the sediments from different trophic areas in Taihu Lake, China. Environ pollut 139:288–295CrossRefGoogle Scholar
  28. Kitheka JU, Obiero M, Nthenge P (2005) River discharge, sediment transport and exchange in the Tana Estuary, Kenya. Estuar Coast and Shelf Sci 63:455–468CrossRefGoogle Scholar
  29. Kjerve B, Ribeiro CH, Dias GTM, Filippo AM, Quaresma VD (1997) Oceanographic characteristics of an impacted coastal bay: baia de Guanabara, Rio de Janeiro, Brazil. Cont Shelf Res 17:1609–1643CrossRefGoogle Scholar
  30. Lai DY, Lam KC (2008) Phosphorus retention and release by sediments in the eutrophic Mai Po Marshes, Hong Kong. Mar Pollut Bull 57:349–356CrossRefGoogle Scholar
  31. Laybauer L, Bidone ED (2001) Caracterização textural dos sedimentos de fundo do Lago Guaíba (Sul do Brasil) e sua importância em diagnósticos ambientais. Instituto de Geociências. Universidade Federal do Rio Grande do Sul, pp 13–26Google Scholar
  32. Li BG, Guo BS (2006) Chemical forms of inorganic phosphorus in sediments in the middle of the yellow river. J Agro Environ Sci 25:1607–1610Google Scholar
  33. Li S, Liu W, Gu S, Cheng X, Xu Z, Zhang Q (2009) Spatio-temporal dynamics of nutrients in the upper han river basin, China. J Hazard Mater 162:1340–1346CrossRefGoogle Scholar
  34. Madureira LAS, Mater L, Alexandre MR, Hansel (2004) FA. Assessment of lipid compounds and phosphorus in mangrove sediments of Santa Catarina Island, SC, Brazil. J Braz Chem Soc 15:725–734CrossRefGoogle Scholar
  35. Mahiques MM, Tessler MG, Hoshika A, Mishima Y, Suguio K, Kawana K (1997) Infra-annual variations in the characteristics of the organic matter from Bertioga Channel, Southeastern Brazil. 6th Congress of the Brazilian Association on Quaternary Research. Abstracts, Curitiba, ABEQUA, pp 94–98Google Scholar
  36. Marins RV, Filho FJP, Rocha CAS (2007) Geoquímica de fósforo como indicadora da qualidade ambiental e dos processos estuarinos do Rio Jaguaribe. Costa Nordeste Oriental Brasileira Quim Nova 30:1208–1214Google Scholar
  37. Mcdowell RW, Sharpley AN (2001) A comparison of fluvial sediment phosphorus (P) Chemistry in relation to location and potential to influence stream P concentrations. Aquat Geochem 71:255–265CrossRefGoogle Scholar
  38. Nizoli EC, Wanilson LS (2009) O papel dos sulfetos volatizados por acidificação no controle do potencial de biodisponibilidade de metais em sedimentos contaminados de um estuário tropical. NO Sudeste do Brasil. Quim Nova. 32:365–372CrossRefGoogle Scholar
  39. Norstrom DK, Wilde FD (2005) Reduction-oxidation potential (electrode method). U.S. Geological Survey Techniques of Water-Resources Investigations, book 9Google Scholar
  40. Ortiz N, Godoi EL, Polakiewicz Pires MAF (2008) Monitoramento de águas de superfície densamente poluídas - O córrego Pirajuçara- localizado na Região Metropolitana de SãoPaulo. Exacta 6:45–257CrossRefGoogle Scholar
  41. CONAMA – Conselho Nacional do Meio Ambiente. Resolução no 357, de 17 de março de (2005) Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências. Alterado pela Resolução CONAMA 397/2008. Disponível em: http://www.mma.gov.br/conama. Acesso em: 14 de Junho de 2015
  42. Ruttenberg KC (1992) Development of a sequential extraction method for different forms of phosphorus in marine sediments. Limnol Oceanogr 37:1460–1482CrossRefGoogle Scholar
  43. Ruttenberg KC (2003) The global phosphorus cycle. In: Holland HD, Turekian KK (eds) Treatise on geochemistry. Elsevier, Amsterdam, pp 585–643CrossRefGoogle Scholar
  44. Saad AR, Semensatto-Junior DL, Ayres FM, Oliveira PE (2007) Índice de Qualidade da Água – IQA do Reservatório do Tanque Grande, município de Guarulhos, Estado de São Paulo, Brasil: 1990-2006. UnG-Geociências 6:118–133Google Scholar
  45. Santos MLS, Saraiva ALL, Delfino IB, Antunes LC, Batista RM, Alves ICC (2010) Avaliação das Formas de Fósforo nos Sedimentos Superficiais da Plataforma Continental do Rio Amazonas. Revista da Gestão Costeira Integrada 10(4):589–596CrossRefGoogle Scholar
  46. Scavia D, Bricker SB (2006) Coastal eutrophication assessment in the United States. Biogeochemistry 79:187–208CrossRefGoogle Scholar
  47. Siquiera GW (2003) Estudo dos teores de metais pesados e outros elementos em sedimentos superficiais do sistema estuarino de Santos (Baixada Santista- São Paulo) e da plataforma continental do Amazonas (Margem Continental Norte). Tese de Doutoramento, IOUSP 327p Google Scholar
  48. Smith SV, Swaney DP, Mcmanus LT, Bartley JD, Sandei PT, McLaughin CJ (2003) Humans, hydrology, and the distribution of inorganic nutrient loading to the ocean. Bioscience 53:235–245CrossRefGoogle Scholar
  49. Strickland JD, Parsons TR (1968) A practical handbook of seawater analysis. Fisheries Research Board of Canada, Ottawa, p 172Google Scholar
  50. Wysocki LA, Bianchi TS, Powell RT, Reuss N (2006) Spatial variability in the coupling of organic carbon, nutrients, and phytoplankton pigments in surface waters and sediments of the Mississippi River Plume. Estuar Coast Shelf S 69:47–63CrossRefGoogle Scholar
  51. Zhang C (2002) The non-point source pollution and the control measures for the Hanjiang and the Danjiang River Basins in Shaanxi Province. Northwest Water Resour Water Eng 13:18–25Google Scholar
  52. Zhang TX, Wang XR, Jin XC (2007) Variations of alkaline phosphatase activity and P fractions in sediments of a shallow Chinese eutrophic lake (Lake Taihu). Environ Pollut 150:288–294CrossRefGoogle Scholar
  53. Zhao X, Zhang Z, Liu C, Xie X (2003) Environment assessment and prediction for the source water area of mid-route Project of Southern Water to the North. Saf Environm. Eng. 10:5–8Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Carlos Marclei Arruda Rangel
    • 1
    Email author
  • José Antônio Baptista Neto
    • 2
  • Priscilla Soares de Oliveira
    • 2
  • Luciana Gomes Lima
    • 2
  • Estefan Monteiro da Fonseca
    • 2
  1. 1.Instituto de EducaçãoIEAR- Universidade Federal FluminenseAngra Dos ReisBrazil
  2. 2.Departamento de GeologiaUniversidade Federal FluminenseNiteróiBrazil

Personalised recommendations