Determination of the thermal conductivity of sandstones from laboratory to field scale

  • Jin LuoEmail author
  • Jia Jia
  • Haifeng Zhao
  • Yongqiang Zhu
  • Qinghai Guo
  • Chaojie Cheng
  • Long Tan
  • Wei Xiang
  • Joachim Rohn
  • Philipp Blum
Thematic Issue
Part of the following topical collections:
  1. Subsurface Energy Storage II


For an optimum design of borehole heat exchangers (BHE) of ground-source heat pump systems, the thermal properties of the ground have to be determined. Thermal properties are typically estimated or measured in the laboratory or in the field. However, the determined values might deviate depending on the scale of observation. Thus, it is important to investigate scale effects. This study determines the thermal conductivity determination of silty sandstone from laboratory to field scale. Thermal conductivity and thermal capacity varying with water saturation are initially investigated in the laboratory. Results show that thermal conductivity increases obviously with increasing water saturation. In addition, effective thermal conductivity of the ground is estimated by a thermal response test in field resulting in a thermal conductivity (λ) of 1.84 W/m K. By comparison with the laboratory results (λ = 2.23 W/m K), the field-derived thermal conductivity shows lower values indicating a scale effect. Microscope image and wave velocity are also studied to investigate the structure of the sandstone. These results indicate that there exist a large numbers of fractures in the silty sandstone, implying that the thermal response test is largely affected by these fractures. Hence, the scale effects should be carefully considered in evaluation of thermal conductivity in particular for fractured porous rocks.


Thermal conductivity Laboratory measurements Thermal response test (TRT) Structure analysis Wave velocity 



Special thanks go to the National Natural Science Foundation of China (NSFC) for the funding of this work (authorized no. 41502238). The project was also supported by the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) nos. CUGL150818 and CUGL 150610. Furthermore, we thank the European Regional Development Fund “Investition in Ihre Zukunft” for co-financing this research project.


  1. Abu-Hamdeh NH, Khdair AI, Reeder RC (2001) A comparison of two methods used to evaluate thermal conductivity for some soils. Int J Heat Mass Transf 44:1073–1078CrossRefGoogle Scholar
  2. Bertermann D, Bialas C, Morper-Busch L, Klug H, Rohn J, Stollhofen MP, Jaudin F, Maragna CM, Einarsson GM, Vikingsson S, Orosz L, Jordan G, Vîjdea AM, Lewis M, Lawley RS, Roinevirta S, Declercq PZ, Petitclerc E, Zacherl A, Arvanitis AA, Stefouli M (2013) ThermoMap—an open-source web mapping application for illustrating the very shallow geothermal potential in Europe and selected case study areas. Eur Geotherm Congr, Pisa, pp 1–7Google Scholar
  3. Bertermann D, Klug H, Morper-Busch L, Bialas C (2014) Modelling vSGPs (very shallow geothermal potentials) in selected CSAs (case study areas). Energy 71:226–244CrossRefGoogle Scholar
  4. Bertermann D, Klug H, Morper-Busch L (2015) A pan-European planning basis for estimating the very shallow geothermal energy potentials. Renew Energy 75:335–347CrossRefGoogle Scholar
  5. Baver LD, Gardner WH, Gardner WR (1972) Thermal conductivity of soil in situ. Soil science 73, Physics, 4th edn. Wiley, New YorkGoogle Scholar
  6. Blum P, Campillo G, Kölbel T (2011) Techno-economic and spatial analysis of vertical ground source heat pump systems in Germany. Energy 36:3002–3011CrossRefGoogle Scholar
  7. Carslaw HS, Jaeger JC, Feshbach H (1962) Conduction of heat in solids. Phys Today 15(11):17CrossRefGoogle Scholar
  8. Choi W, Ooka R (2015) Interpretation of disturbed data in thermal response tests using the infinite line source model and numerical parameter estimation method. Appl Energy 148:476–488CrossRefGoogle Scholar
  9. Daniel IM, Rowlands RE (1975) On wave and fracture propagation in rock media. Exp Mech 15:449–457CrossRefGoogle Scholar
  10. Eklöf C, Gehlin S (1996) TED—a mobile equipment for thermal response test. Masters Thesis, Luleå University of Technology, SwedenGoogle Scholar
  11. Esen H, Inalli M (2009) In-situ thermal response test for ground source heat pump system in Elazığ, Turkey. Energy Build 41(4):395–401CrossRefGoogle Scholar
  12. Gehlin S (2002) Thermal response test: method development and evaluation. Doctoral thesis. Luleå University of Technology, LuleåGoogle Scholar
  13. Gehlin SEA, Hellström G (2003) Influence on thermal response test by groundwater flow in vertical fractures in hard rock. Renew Energ 28:2221–2238CrossRefGoogle Scholar
  14. Hellström G (1991) Ground heat storage: thermal analyses of duct storage systems. Dissertation, Department of Applied Mathematical Physics, University of Lund, SwedenGoogle Scholar
  15. Huang JH (2010) Effective thermal conductivity of porous rocks. Can Pub Policy 36(2):3–10Google Scholar
  16. Kersten MS (1949) Thermal properties of soils. Bulletin 28, LII/21. University of Minnesota, Minnesota, p 227Google Scholar
  17. Luo J, Rohn J, Bayer M, Priess A, Xiang W (2014) Analysis on performance of borehole heat exchanger in a layered subsurface. Appl Energy 123:55–65CrossRefGoogle Scholar
  18. Man Y, Yang HX, Wang JG (2010) Study on hybrid ground-coupled heat pump system for air-conditioning in hot-weather areas like Hong Kong. Appl Energy 87:2826–2833CrossRefGoogle Scholar
  19. Menberg K, Steger H, Zorn R, Reuß M, Proell M, Bayer P, Blum P (2013) Bestimmung der Wärmeleitfähigkeit im Untergrund durch Labor- und Feld-versuche und anhand theoretischer Modelle. Grundwasser 18:103–116CrossRefGoogle Scholar
  20. Midttomme K, Roaldset E, Aagaard P (1998) Thermal conductivity of selected claystones and mudstones from England. Clay Miner 33:131–145CrossRefGoogle Scholar
  21. Münkel P (2012) Untersuchung der thermischen Leitfähigkeit an Bohrkernen für die Eignung der flachen Geothermie. Bachelor-Thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (unpublished)Google Scholar
  22. Popov YA, Berezin VV, Semionov VG, Korosteliov VM (1985) Complex detailed investigations of the thermal properties of rocks on the basis of a moving point source. Izv Phys Solid Earth 1:64–70Google Scholar
  23. Popov YA, Pevzner SL, Pimenov VP, Romushkevich RA (1999a) New geothermal data from the Kola superdeep well SG-3. Tectonophysics 306:345–366CrossRefGoogle Scholar
  24. Popov YA, Pribnow DFC, Sass JH, Williams CF, Burkhardt H (1999b) Characterization of rock thermal conductivity by high-resolution optical scanning. Geothermics 28:253–276CrossRefGoogle Scholar
  25. Popov YA, Tertychnyi V, Romushkevich R, Korobkov D, Pohl J (2003) Interrelations between thermal conductivity and other physical properties of rocks: experimental data. Pure Appl Geophys 160:1137–1161CrossRefGoogle Scholar
  26. Sanner B, Hellström G, Spitler JD, Gehlin SEA (2005) Thermal response test—current status and world-wide application. Proceedings of the world geothermal energy congress. Antalya, Turkey, pp 1–9Google Scholar
  27. Sarbu L, Sebarchievici C (2014) General review of ground-source heat pump systems for heating and cooling of buildings. Energy Build 70:441–454CrossRefGoogle Scholar
  28. Shonder JA, Beck JV (1999) Determining effective soil formation thermal properties from field data using a parameter estimation technique. ASHRAE Trans 105(1):458–466Google Scholar
  29. Spitler JD, Gehlin SEA (2015) Thermal response testing for ground source heat pump systems—an historical review. Renew Sustain Energy Rev 50:1125–1137CrossRefGoogle Scholar
  30. Stauffer F, Bayer P, Blum P, Molina-Giraldo N, Kinzelbach W (2013) Thermal use of shallow groundwater. CRC Press Taylor & Francis Group, Boca Raton, pp 16–18CrossRefGoogle Scholar
  31. Usowicz B, Kossowski J, Baranowski P (1996) Spatial variability of soil thermal properties in cultivated fields. Soil Tillage Res 39(1–2):85–100CrossRefGoogle Scholar
  32. Usowicz B, Lipiec J, Usowicz JB (2008) Thermal conductivity in relation to porosity and hardness of terrestrial porous media. Planet Space Sci 56(3–4):438–447CrossRefGoogle Scholar
  33. VDI-4640 (2001a) Thermische Nutzung des Untergrundes: Erdgekoppelte Wärmepumenanlagen (Thermal use of the underground: Ground Source Heat Pump Systems). Duesseldorf, Germany Part 2: pp. 41Google Scholar
  34. VDI-4640 (2001b) Thermische Nutzung des Unterirdische Thermal Energie speicher (Utilization of the subsurface for thermal purposes: Underground thermal energy storage). Duesseldorf, Germany, Part 3, pp 41–42Google Scholar
  35. Vogel HJ, Weller U, Schlüter S (2010) Quantification of soil structure based on Minkowski functions. Comput Geosci 36(10):1236–1245CrossRefGoogle Scholar
  36. Wagner V, Bayer P, Kübert M, Blum P (2012) Numerical sensitivity study of thermal response tests. Renew Energy 41:245–253CrossRefGoogle Scholar
  37. Wagner V, Blum P, Kübert M, Bayer P (2013) Analytical approach to groundwater-influenced thermal response tests of grouted borehole heat exchangers. Geothermics 46:22–31CrossRefGoogle Scholar
  38. Xiang W, Cui DS, Liu QB, Lu XS, Cao LJ (2010) Theory and practice of ionic soil stabilizer reinforcing special clay. J Earth Sci 21(6):882–887CrossRefGoogle Scholar
  39. Yang H, Cui P, Fang Z (2010) Vertical-borehole ground-coupled heat pumps: a review of models and systems. Appl Energy 87(1):16–27CrossRefGoogle Scholar
  40. Yun TS, Santamarina JC (2008) Fundamental study of thermal conduction in dry soils. Granul Matter 10(3):197–207CrossRefGoogle Scholar
  41. Zeng HY, Diao NR, Fang ZH (2002) A finite line-source model for boreholes in geothermal heat exchangers. Heat Transf Asian Res 31:558–567CrossRefGoogle Scholar
  42. Zhao H, Wu Q, Zhu WJ, Wen T, Li SH, Jia DS (2010) Xinyang city chracteristics and causes of temperature changes. Chin Agric Sci Bull 21(6):346–350Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jin Luo
    • 1
    Email author
  • Jia Jia
    • 1
  • Haifeng Zhao
    • 2
  • Yongqiang Zhu
    • 1
  • Qinghai Guo
    • 1
  • Chaojie Cheng
    • 1
  • Long Tan
    • 1
  • Wei Xiang
    • 1
  • Joachim Rohn
    • 3
  • Philipp Blum
    • 4
  1. 1.Faculty of Engineering, School of Environmental StudiesChina University of Geosciences (Wuhan)WuhanPeople’s Republic of China
  2. 2.Survey Research Institute of the Three Gorges Co. Ltd.WuhanPeople’s Republic of China
  3. 3.Geo-Center of Northern BavariaUniversity of Erlangen-NürnbergErlangenGermany
  4. 4.Institute for Applied Geosciences (AGW)Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations