Advertisement

Comparison of slug and pumping tests for hydraulic tomography experiments: a practical perspective

  • Daniel Paradis
  • René Lefebvre
  • Erwan Gloaguen
  • Bernard Giroux
Thematic Issue
Part of the following topical collections:
  1. NovCare - Novel Methods for Subsurface Characterization and Monitoring: From Theory to Practice

Abstract

Hydraulic tomography is the simultaneous analysis of several hydraulic tests performed in multiple isolated intervals in adjacent wells to image heterogeneous hydraulic property fields. In this study, we compare the resolutions associated with hydraulic tomography experiments carried out with slug tests and pumping tests for simple configurations with hydraulic property values representative of an extensively studied littoral aquifer. Associated test designs (e.g., pumping rates, test durations) and the validity of the principle of reciprocity are also assessed. For this purpose, synthetic tomography experiments and their associated sensitivity matrices are generated using a radial flow model accounting for wellbore storage. The resolution analysis is based on a pseudo-inverse analysis of the sensitivity matrix with a noise level representative of field measurements. Synthetic experiments used equivalent perturbations for slug tests and pumping tests. Even though pumping tests induce a drawdown in observation intervals that is three times larger than head changes due to slug tests, resolutions for hydraulic conductivities (horizontal and vertical) are similar for the two tests and slightly lower for specific storage with pumping. However, experiments with pumping require fifty times more water and are seven times longer to perform than experiments with slug tests. Furthermore, reducing pumping rates to limit disposal of water or test durations to decrease field data acquisition time would considerably lower resolutions for either scenario. Analyses are done using all available stressed and observation intervals as required by the non-applicability of the principle of reciprocity for slug tests and pumping tests with important wellbore storage. This study demonstrates concepts that have important implications for the performance and analysis of hydraulic tomography experiments.

Keywords

Aquifer characterization Heterogeneity Hydraulic tomography Slug tests Pumping tests Resolution analysis Principle of reciprocity 

Notes

Acknowledgments

This study was supported by the Geological Survey of Canada as part of the Groundwater Geoscience Program and by NSERC Discovery Grants held by R. L. and E. G. The authors would like to thank the four anonymous reviewers that provided constructive reviews. This is ESS contribution number 20150440.

Supplementary material

12665_2016_5935_MOESM1_ESM.docx (132 kb)
Supplementary material 1 (DOCX 131 kb)

References

  1. Aster RC, Borchers B, Thurber CH (2005) Parameter estimation and inverse problems. Elsevier, AmsterdamGoogle Scholar
  2. Berg SJ, Illman WA (2011) Three-dimensional transient hydraulic tomography in a highly heterogeneous glaciofluvial aquifer-aquitard system. Water Resour Res 47:W10507. doi: 10.1029/2011WR010616 Google Scholar
  3. Berg SJ, Illman WA (2013) Field study of subsurface heterogeneity with steady state hydraulic tomography. Groundwater 51(1):29–40. doi: 10.1111/j.1745-6584.2012.00914.x CrossRefGoogle Scholar
  4. Berg SJ, Illman WA (2015) Comparison of hydraulic tomography with traditional methods at a highly heterogeneous site. Groundwater 53(1):71–89. doi: 10.1111/gwat.12159 CrossRefGoogle Scholar
  5. Bohling GC (2009) Sensitivity and resolution of tomographic pumping tests in an alluvial aquifer. Water Resour Res 45:W02420. doi: 10.1029/2008WR007249 CrossRefGoogle Scholar
  6. Bohling GC, Butler JJ Jr (2001) Lr2dinv: A finite-difference model for inverse analysis of two-dimensional linear or radial groundwater flow. Comput Geosci 27:1147–1156CrossRefGoogle Scholar
  7. Bohling GC, Butler JJ Jr (2010) Inherent limitations of hydraulic tomography. Ground Water 48:809–824. doi: 10.1111/j.1745-6584.2010.00757.x CrossRefGoogle Scholar
  8. Bohling GC, Zhan X, Butler JJ Jr, Zheng L (2002) Steady shape analysis of tomographic pumping tests for characterization of aquifer heterogeneities. Water Resour Res 38(12):1324. doi: 10.1029/2001WR001176 CrossRefGoogle Scholar
  9. Bohling GC, Butler JJ Jr, Zhan X, Knoll MD (2007) A Field Assessment of the value of steady-shape hydraulic tomography for characterization of aquifer heterogeneities. Water Resour Res 43(5):W05430. doi: 10.1029/2006WR004932 CrossRefGoogle Scholar
  10. Brauchler R, Liedl R, Dietrich P (2003) A travel time based hydraulic tomographic approach. Water Resour Res 39(12):1370. doi: 10.1029/2003WR002262 CrossRefGoogle Scholar
  11. Brauchler R, Hu R, Vogt T, Al-Halbouni D, Heinrichs T, Ptak T, Sauter M (2010) Cross-well slug interference tests: an effective characterization method for resolving aquifer heterogeneity. J Hydrol 384(1–2):33–45CrossRefGoogle Scholar
  12. Brauchler R, Hu R, Dietrich P et al (2011) A field assessment of high-resolution aquifer characterization based on hydraulic travel time and hydraulic attenuation tomography. Water Resour Res 47:W03503CrossRefGoogle Scholar
  13. Brauchler R, Hu R, Hu L, Jiménez S, Bayer P, Dietrich P, Ptak T (2013) Rapid field application of hydraulic tomography for resolving aquifer heterogeneity in unconsolidated sediments. Water Resour Res 49(4):2013–2024CrossRefGoogle Scholar
  14. Butler JJ Jr (2005) Hydrogeological methods for estimation of hydraulic conductivity. In: Rubin Y, Hubbard S (eds) Hydrogeophysics. Springer, New York, pp 23–58CrossRefGoogle Scholar
  15. Butler Jr JJ, McElwee CD (1995) Well-testing methodology for characterizing heterogeneities in alluvial-aquifer systems: final technical report. Kans Geol Surv Open File Rep 75–95Google Scholar
  16. Butler JJ Jr, McElwee CD (1990) Variable-rate pumping tests for radially symmetric nonuniform aquifers. Water Resour Res 26(2):291–306CrossRefGoogle Scholar
  17. Butler JJ Jr, McElwee CD, Bohling GC (1999) Pumping tests in networks of multilevel sampling wells: motivation and methodology. Water Resour Res 35(11):3553–3560. doi: 10.1029/1999WR900231 CrossRefGoogle Scholar
  18. Caers J (2005) Petroleum geostatistics. Society of Petroleum Engineers, RichardsonGoogle Scholar
  19. Cardiff M, Barrash W (2011) 3-D transient hydraulic tomography in unconfined aquifers with fast drainage response. Water Resour Res 47:W12518. doi: 10.1029/2010WR010367 CrossRefGoogle Scholar
  20. Cardiff M, Barrash W, Kitanidis PK, Malama B, Revil A, Straface S, Rizzo E (2009) A potential-based inversion of unconfined steady-state hydraulic tomography. Ground Water 47(2):259–270. doi: 10.1111/j.1745-6584.2008.00541.x CrossRefGoogle Scholar
  21. Cardiff M, Barrash W, Kitanidis PK (2012) A field proof-of-concept of aquifer imaging using 3-D transient hydraulic tomography with modular, temporarily-emplaced equipment. Water Resour Res 48:W05531. doi: 10.1029/2011WR011704 CrossRefGoogle Scholar
  22. Cardiff M, Bakhos T, Kitanidis PK, Barrash W (2013) Aquifer heterogeneity characterization with oscillatory pumping: sensitivity analysis and imaging potential. Water Resour Res 49(9):5395–5410CrossRefGoogle Scholar
  23. Carrera J, Neuman SP (1986) Estimation of aquifer parameters under transient and steady state conditions: 1. Maximum likelihood method incorporating prior information. Water Resour Res 22(2):199–210. doi: 10.1029/WR022i002p00199 CrossRefGoogle Scholar
  24. Carrera J, Alcolea A, Medina A, Hidalgo J, Slooten LJ (2005) Inverse problem in hydrogeology. Hydrogeol J 13:206–222. doi: 10.1007/s10040-004-0404-7 CrossRefGoogle Scholar
  25. Clemo T, Michaels P, Lehman RM (2003) Transmissivity resolution obtained from the inversion of transient and pseudo-steady drawdown measurements. In: Proceedings of MODFLOW and more 2003 understanding through modeling. Integrated Ground Water Modeling Center, Golden, CO, USA, pp 629–633Google Scholar
  26. Doherty J (2003) Ground water model calibration using pilot points and regularization. Ground Water 41(2):170–177. doi: 10.1111/j.1745-6584.2003.tb02580.x CrossRefGoogle Scholar
  27. Dougherty DE, Babu DK (1984) Flow to a partially penetrating well in a double-porosity reservoir. Water Resour Res 20(8):1116–1122. doi: 10.1029/WR020i008p01116 CrossRefGoogle Scholar
  28. Ferris JG, Knowles DB (1963) The slug-injection test for estimating the coefficient of transmissibility of an aquifer. In: US geological survey water-supply paper 15361-I, R. Bentall (compiler), p 299Google Scholar
  29. Fienen MN, Clemo T, Kitanids PK (2008) An interactive Bayesian geostatistical inverse protocol for hydraulic tomography. Water Resour Res 44:W00B01. doi: 10.1029/2007WR006730 CrossRefGoogle Scholar
  30. Gottlieb J, Dietrich P (1995) Identification of the permeability distribution in soil by hydraulic tomography. Inverse Probl 11:353–360. doi: 10.1088/0266-5611/11/2/005 CrossRefGoogle Scholar
  31. Guiltinan E, Becker MW (2015) Measuring well hydraulic connectivity in fractured bedrock using periodic slug tests. J Hydrol 521:100–107. doi: 10.1016/j.jhydrol.2014.11.066 CrossRefGoogle Scholar
  32. Huang S-Y, Wen J-C, Yeh T-CJ, Lu W, Juan H-L, Tseng C-M, Lee J-H, Chang K-C (2011) Robustness of joint interpretation of sequential pumping tests: numerical and field experiments. Water Resour Res 47(W10530):2011W. doi: 10.1029/R010698 Google Scholar
  33. Illman WA, Liu X, Craig A (2007) Steady-state hydraulic tomography in a laboratory aquifer with deterministic heterogeneity: multimethod and multiscale validation of hydraulic conductivity tomograms. J Hydrol 341(3–4):222–234. doi: 10.1016/j.jhydrol.2007.05.011 CrossRefGoogle Scholar
  34. Illman WA, Craig AJ, Liu X (2008) Practical issues in imaging hydraulic conductivity through hydraulic tomography. Ground Water 46(1):120–132. doi: 10.1111/j.1745-6584.2007.00374.x Google Scholar
  35. Illman WA, Liu X, Takeuchi S, Yeh TJ, Ando K, Saegusa H (2009) Hydraulic tomography in fractured granite: Mizunami underground research site, Japan. Water Resour Res 45:W01406. doi: 10.1029/2007WR006715 CrossRefGoogle Scholar
  36. Kitanidis PK (1995) Quasi-linear geostatistical theory for inversing. Water Resour Res 31(10):2411–2419CrossRefGoogle Scholar
  37. Kruseman GP, de Ridder NA (2000) Analysis and evaluation of pumping test data. ILRI Publishing, WageningenGoogle Scholar
  38. Leven C, Dietrich P (2006) What information we get from pumping tests? Comparing pumping configurations using sensitivity coefficients. J Hydrol 319:199–215CrossRefGoogle Scholar
  39. Liu X, Kitanidis PK (2011) Large-scale inverse modeling with an application in hydraulic tomography. Water Resour Res 47:W02501. doi: 10.1029/2010WR009144 Google Scholar
  40. McKinley RM, Vela S, Carlton LA (1968) A field application of pulse-testing for detailed reservoir description. J Petrol Technol 20(3):313–321CrossRefGoogle Scholar
  41. Menke W (2012) Geophysical data analysis: discrete inverse theory, 3rd edn. Academic Press, CambridgeGoogle Scholar
  42. Moore EH (1920) On the reciprocal of the general algebraic matrix. Bull Am Math Soc 26:394–395Google Scholar
  43. Novakowski KS (1989) Analysis of pulse interference tests. Water Resour Res 25(11):2377–2387CrossRefGoogle Scholar
  44. Oliver DS (1993) The influence of nonuniform transmissivity and storativity on drawdown. Water Resour Res 29(1):169–178CrossRefGoogle Scholar
  45. Paradis D, Gloaguen E, Lefebvre R, Giroux B (2015) Resolution analysis of tomographic slug tests head data: two-dimensional radial case. Water Resour Res 51:2356–2376. doi: 10.1002/2013WR014785 CrossRefGoogle Scholar
  46. Paradis D, Gloaguen E, Lefebvre R, Giroux B (2016) A field proof-of-concept of tomographic slug tests in an anisotropic littoral aquifer. J Hydrol 536:61–73. doi: 10.1016/j.jhydrol.2016.02.041 CrossRefGoogle Scholar
  47. Penrose R (1955) A generalized inverse for matrices. Proc Cambridge Philos Soc 51:406–413CrossRefGoogle Scholar
  48. Peres AM, Onur M, Reynolds AC (1989) A new analysis procedure for determining aquifer properties from slug test data. Water Resour Res 25(7):1591–1602CrossRefGoogle Scholar
  49. Rovey CW, Cherkauer DS II (1995) Scale dependency of hydraulic conductivity measurements. Ground Water 33(5):769–780CrossRefGoogle Scholar
  50. Rubin Y, Hubbard SS (2005) Hydrogeophysics. Springer, DordrechtCrossRefGoogle Scholar
  51. Sageev A (1986) Slug test analysis. Water Resour Res 22(8):1323–1333CrossRefGoogle Scholar
  52. Soueid Ahmed SA, Jardani A, Revil A, Dupont JP (2014) Hydraulic conductivity field characterization from the joint inversion of hydraulic heads and self-potential data. Water Resour Res 50:3502–3522. doi: 10.1002/2013WR014645 CrossRefGoogle Scholar
  53. Sun R, Yeh T-CJ, Mao D, Jin M, Lu W, Hao Y (2013) A temporal sampling strategy for hydraulic tomography analysis. Water Resour Res 49:3881–3896. doi: 10.1002/wrcr.20337 CrossRefGoogle Scholar
  54. Tikhonov AN (1963) Regularization of incorrectly posed problems. Sov Math Dokl 4(6):1624–1627Google Scholar
  55. Tikhonov AN, Arsenin VA (1977) Solution of Ill-posed problems. Wiley, New-YorkGoogle Scholar
  56. Tonkin MJ, Doherty J (2005) A hybrid regularization methodology for highly parameterized environmental models. Water Resour Res 41:W10412. doi: 10.1029/2005WR003995 CrossRefGoogle Scholar
  57. Tosaka H, Masumoto K, Kojima K (1993) Hydropulse tomography for identifying 3-D permeability distribution in high level radioactive waste management. In: Proceedings of the fourth annual international conference of the ASCE. American Society of Civil Engineers, Reston, VA, pp 955–959Google Scholar
  58. Vasco DW, Datta-Gupta A, Long JCS (1997) Resolution and uncertainty in hydrologic characterization. Water Resour Res 33(3):379–397. doi: 10.1029/96WR03301 CrossRefGoogle Scholar
  59. Xiang J, Yeh T-CJ, Lee C-H, Hsu K-C, Wen J-C (2009) A simultaneous successive linear estimator and a guide for hydraulic tomography analysis. Water Resour Res 45:W02432. doi: 10.1029/2008WR007180 CrossRefGoogle Scholar
  60. Yeh T-CJ, Liu S (2000) Hydraulic tomography: development of a new aquifer test method. Water Resour Res 36(8):2095–2105. doi: 10.1029/2000WR900114 CrossRefGoogle Scholar
  61. Zha Y, Yeh T-CJ, Mao D, Yang J, Lu W (2014) Usefulness of flux measurements during hydraulic tomographic survey for mapping hydraulic conductivity distribution in a fractured medium. Adv Water Resour 71:162–176. doi: 10.1016/j.advwatres.2014.06.008 CrossRefGoogle Scholar
  62. Zhu J, Yeh T-CJ (2005) Characterization of aquifer heterogeneity using transient hydraulic tomography. Water Resour Res 41:W07028. doi: 10.1029/2004WR003790 CrossRefGoogle Scholar

Copyright information

© © Crown Copyright 2016

Authors and Affiliations

  • Daniel Paradis
    • 1
  • René Lefebvre
    • 2
  • Erwan Gloaguen
    • 2
  • Bernard Giroux
    • 2
  1. 1.Geological Survey of CanadaQuebec CityCanada
  2. 2.Institut national de la recherche scientifiqueCentre Eau Terre Environnement (INRS-ETE)Quebec CityCanada

Personalised recommendations