Comparison of multiple linear regression and artificial neural network models for downscaling TRMM precipitation products using MODIS data

  • D. D. AlexakisEmail author
  • I. K. Tsanis
Original Article


Precipitation plays a significant role to energy exchange and material circulation in Earth’s surface system. According to numerous studies, traditional point measurements based on rain gauge stations are unable to reflect the spatial variation of precipitation effectively. On the other hand, satellite remote sensing could solve this limitation by directly providing spatial distribution of rainfall over large areas. During the last years, the Tropical Rainfall Measuring Mission (TRMM) has provided researchers with a large volume of rainfall data used for the validation of atmospheric and climate models. However, due to its coarse resolution (0.25°) the improvement of its resolution appears as a fundamental task. The main aim of this study is to compare two different integrated downscaling-calibration approaches namely multiple linear regression analysis and artificial neural networks for downscaling TRMM 3B42 precipitation data. The statistical relationship among TRMM precipitation data and different environmental parameters such as vegetation, albedo, drought index and topography were tested in the island of Crete, Greece. Free distributed satellite data of coarse resolution such as those of MODIS sensor were incorporated in the overall analysis. Multiple linear regression as well as artificial neural network models was developed and applied, and extensive statistical analysis was performed by downscaling the TRMM products. The downscaled precipitation estimates as well as the TRMM products were subsequently validated for their accuracy by using an independent precipitation dataset from a ground rain gauge network. The downscaling procedure succeeded to significant improvements of monthly precipitation estimation (100 % improvement in terms of spatial resolution) in terms of spatial analysis with means of satellite remote sensing.


Downscaling TRMM MODIS Neural networks Precipitation 



The research reported in this paper was fully supported by the “ARISTEIA II” Action (“REINFORCE”/General Secretariat for Research and Technology, Hellas) of the “Operational Education and Life Long Learning programme” and was co-funded by the European Social Fund (ESF) and National Resources.


  1. AghaKouchak A, Nasrollahi N, Habib E (2009) Accounting for uncertainties of the TRMM satellite estimates. Remote Sens 1:606–619. doi: 10.3390/rs1030606 CrossRefGoogle Scholar
  2. Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Environ 58:21–44. doi: 10.1007/s100640050066 CrossRefGoogle Scholar
  3. Atkinson PM (2013) Downscaling in remote sensing. Int J Appl Earth Obs Geoinf 22:106–114. doi: 10.1016/j.jag.2012.04.012 CrossRefGoogle Scholar
  4. Benali A, Carvalho AC, Nunes JP et al (2012) Estimating air surface temperature in Portugal using MODIS LST data. Remote Sens Environ 124:108–121. doi: 10.1016/j.rse.2012.04.024 CrossRefGoogle Scholar
  5. Cai G, Du M, Liu Y (2010) Regional drought monitoring and analysing using MODIS data—a case study in Yunnan Province. In: Computer and computing technologies in agriculture IV. IFIP Advances in information and communication technology, vol 345. pp 243–251. doi: 10.1007/978-3-642-18336-2_29
  6. Cheema MJM, Bastiaanssen WGM (2012) Local calibration of remotely sensed rainfall from the TRMM satellite for different periods and spatial scales in the Indus Basin. Int J Remote Sens 33:2603–2627. doi: 10.1080/01431161.2011.617397 CrossRefGoogle Scholar
  7. Chen F, Liu Y, Liu Q, Li X (2014) Spatial downscaling of TRMM 3B43 precipitation considering spatial heterogeneity. Int J Remote Sens. doi: 10.1080/01431161.2014.902550 Google Scholar
  8. Condom T, Rau P, Espinoza JC (2011) Correction of TRMM 3B43 monthly precipitation data over the mountainous areas of Peru during the period 1998–2007. Hydrol Process 25:1924–1933. doi: 10.1002/hyp.7949 CrossRefGoogle Scholar
  9. Conforti M, Pascale S, Robustelli G, Sdao F (2014) Evaluation of prediction capability of the artificial neural networks for mapping landslide susceptibility in the Turbolo River catchment (Northern Calabria, Italy). Catena 113:236–250. doi: 10.1016/j.catena.2013.08.006 CrossRefGoogle Scholar
  10. Curtarelli MP, Rennó CD, Alcântara EH (2014) Evaluation of the tropical rainfall measuring mission 3B43 product over an inland area in Brazil and the effects of satellite boost on rainfall estimates. J Appl Remote Sens 8:083589. doi: 10.1117/1.JRS.8.083589 CrossRefGoogle Scholar
  11. Dinku T, Ceccato P, Grover-Kopec E et al (2007) Validation of satellite rainfall products over East Africa’s complex topography. Int J Remote Sens 28:1503–1526. doi: 10.1080/01431160600954688 CrossRefGoogle Scholar
  12. Du L, Tian Q, Yu T et al (2013) A comprehensive drought monitoring method integrating MODIS and TRMM data. Int J Appl Earth Obs Geoinf 23:245–253. doi: 10.1016/j.jag.2012.09.010 CrossRefGoogle Scholar
  13. Duan Z, Bastiaanssen WGM (2013) First results from Version 7 TRMM 3B43 precipitation product in combination with a new downscaling-calibration procedure. Remote Sens Environ 131:1–13. doi: 10.1016/j.rse.2012.12.002 CrossRefGoogle Scholar
  14. Fang J, Du J, Xu W et al (2013) Spatial downscaling of TRMM precipitation data based on the orographical effect and meteorological conditions in a mountainous area. Adv Water Resour 61:42–50. doi: 10.1016/j.advwatres.2013.08.011 CrossRefGoogle Scholar
  15. Immerzeel WW, Rutten MM, Droogers P (2009) Spatial downscaling of TRMM precipitation using vegetative response on the Iberian Peninsula. Remote Sens Environ 113:362–370. doi: 10.1016/j.rse.2008.10.004 CrossRefGoogle Scholar
  16. Jia S, Zhu W, Lu A, Yan T (2011) A statistical spatial downscaling algorithm of TRMM precipitation based on NDVI and DEM in the Qaidam Basin of China. Remote Sens Environ 115:3069–3079. doi: 10.1016/j.rse.2011.06.009 CrossRefGoogle Scholar
  17. Kitikidou K, Iliadis L (2012) Developing neural networks to investigate relationships between air quality and quality of life indicators. In: Air pollution-monitoring, modelling and health, vol 1. pp 245–258. doi: 10.5772/34609.s Google Scholar
  18. Koutroulis AG, Tsanis IK (2010) A method for estimating flash flood peak discharge in a poorly gauged basin: case study for the 13-14 January 1994 flood, Giofiros basin, Crete, Greece. J Hydrol 385:150–164. doi: 10.1016/j.jhydrol.2010.02.012 CrossRefGoogle Scholar
  19. Kumar R, Das IML, Gairola RM et al (2007) Rainfall retrieval from TRMM radiometric channels using artificial neural networks. Indian J Radio Space Phys 36:114–127Google Scholar
  20. Kummerow C, Barnes W, Kozu T et al (1998) The tropical rainfall measuring mission (TRMM) sensor package. J Atmos Ocean Technol 15:809–817. doi: 10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2 CrossRefGoogle Scholar
  21. Li L, Hong Y, Wang J et al (2009) Evaluation of the real-time TRMM-based multi-satellite precipitation analysis for an operational flood prediction system in Nzoia Basin, Lake Victoria, Africa. Nat Hazards 50:109–123. doi: 10.1007/s11069-008-9324-5 CrossRefGoogle Scholar
  22. Mantas VM, Liu Z, Caro C, Pereira AJSC (2014) Validation of TRMM multi-satellite precipitation analysis (TMPA) products in the Peruvian Andes. Atmos Res. doi: 10.1016/j.atmosres.2014.11.012 Google Scholar
  23. Michaelides SC, Tymvios FS, Michaelidou T (2009) Spatial and temporal characteristics of the annual rainfall frequency distribution in Cyprus. Atmos Res 94:606–615. doi: 10.1016/j.atmosres.2009.04.008 CrossRefGoogle Scholar
  24. Naoum S, Tsanis IK (2003) Temporal and spatial variation of annual rainfall on the island of Crete, Greece. Hydrol Process 17:1899–1922. doi: 10.1002/hyp.1217 CrossRefGoogle Scholar
  25. Shaban A (2009) Using MODIS images and TRMM data to correlate rainfall peaks and water discharges from the lebanese coastal rivers. J Water Resour Prot 01:227–236. doi: 10.4236/jwarp.2009.14028 CrossRefGoogle Scholar
  26. Shrivastava R, Dash SK, Hegde MN et al (2014) Validation of the TRMM multi satellite rainfall product 3B42 and estimation of scavenging coefficients for 131I and 137Cs using TRMM 3B42 rainfall data. J Environ Radioact 138:132–136. doi: 10.1016/j.jenvrad.2014.08.011 CrossRefGoogle Scholar
  27. Su F, Hong Y, Lettenmaier DP (2008) Evaluation of TRMM multisatellite precipitation analysis (TMPA) and its utility in hydrologic prediction in the La Plata Basin. J Hydrometeorol 9:622–640. doi: 10.1175/2007JHM944.1 CrossRefGoogle Scholar
  28. Tan M, Ibrahim A, Duan Z et al (2015) Evaluation of six high-resolution satellite and ground-based precipitation products over Malaysia. Remote Sens 7:1504–1528. doi: 10.3390/rs70201504 CrossRefGoogle Scholar
  29. Themistocleous K, Hadjimitsis DG, Retalis A et al (2013) Precipitation effects on the selection of suitable non-variant targets intended for atmospheric correction of satellite remotely sensed imagery. Atmos Res 131:73–80. doi: 10.1016/j.atmosres.2012.02.015 CrossRefGoogle Scholar
  30. Tomassetti B, Verdecchia M, Giorgi F (2009) NN5: a neural network based approach for the downscaling of precipitation fields—model description and preliminary results. J Hydrol 367:14–26. doi: 10.1016/j.jhydrol.2008.12.017 CrossRefGoogle Scholar
  31. Tsanis I, Naoum S (2003) The effect of spatially distributed meteorological parameters on irrigation water demand assessment. Adv Water Resour 26:311–324. doi: 10.1016/S0309-1708(02)00100-8 CrossRefGoogle Scholar
  32. Tsanis IK, Koutroulis AG, Daliakopoulos IN, Jacob D (2011) Severe climate-induced water shortage and extremes in Crete. Clim Change 106:667–677. doi: 10.1007/s10584-011-0048-2 CrossRefGoogle Scholar
  33. Ud Din S, Al-Dousari A, Ramdan A, Al Ghadban A (2008) Site-specific precipitation estimate from TRMM data using bilinear weighted interpolation technique: an example from Kuwait. J Arid Environ 72:1320–1328. doi: 10.1016/j.jaridenv.2007.12.013 CrossRefGoogle Scholar
  34. Verlinde J (2011) TRMM rainfall data downscaling in the Pangani Basin in Tanzania. Master Sci Thesis Delft Univ Technol 1:1–72Google Scholar
  35. Wang Z, Schaaf CB, Strahler AH et al (2014) Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods. Remote Sens Environ 140:60–77. doi: 10.1016/j.rse.2013.08.025 CrossRefGoogle Scholar
  36. Zargar A, Sadiq R, Naser B, Khan FI (2011) A review of drought indices. Environ Rev 19:333–349. doi: 10.1139/a11-013 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of Environmental EngineeringTechnical University of CreteChaniaGreece
  2. 2.Department of Civil EngineeringMcMaster UniversityHamiltonCanada

Personalised recommendations