Advertisement

Using 222Rn and carbon isotopes (12C, 13C and 14C) to determine CO2 sources in forest soils developed on contrasting geology in Slovenia

  • Bor Krajnc
  • Ryoko Fujiyoshi
  • Janja Vaupotič
  • Hikaru Amano
  • Yousuke Sakuta
  • Asta Gregorič
  • Nives Ogrinc
Original Article

Abstract

Global carbon estimates have identified abiotic CO2 as a potentially significant source of atmospheric CO2, albeit little is known about its origin. The aim of this study was to identify the origin of soil CO2 using carbon isotopes and 222Rn data. The study involved collecting data from seven Slovenian forest soils developed over bedrock with contrasting geology where different origin of soil CO2 was expected; two sampling sites were located on soils formed above carbonate bedrock, one above metamorphic bedrock and the remainder above clastic sedimentary rocks. Analysis of soil gas including the levels of CO2, carbon isotope measurements (12C, 13C and 14C) and 222Rn activity was recorded at a soil depth of 80 cm. Isotopic analysis revealed that the CO2 was young and there was no difference in the age of soil CO2 above either carbonate or non-carbonate bedrock. The data also suggest that the 13C-enrichment in soil CO2, above carbonate bedrock was a consequence of the mixing of soil CO2 with atmospheric CO2 and/or the ventilation of subterranean CO2 from pores, fissures and cavities. The latter effect was supported by the high 222Rn concentrations observed at these sites. Based on the \(\delta^{13} {\text{C}}_{{{\text{CO}}_{2} }}\) data, photosynthesis prevailed over microbial respiration accounting for the majority (>70 %) of total soil CO2 over non-carbonate bedrock—at least at the time of sampling. Overall, results from this study could represent useful information for global carbon cycle models used to predict the impacts of climate changes.

Keywords

Soil gas CO2 Carbon isotopes 222Rn Geology Slovenia 

Notes

Acknowledgments

This work was partially supported by the Slovenian Research Agency within the program no. P1-0143, the Slovenia-Japan cooperation in science and technology within the bilateral project BI-JP-10-12-002 and by the Japan Atomic Energy Agency (JAEA) for measuring carbon isotopes by AMS (2012A-F02, 2014A-F04). We would like to thank the staff members of the Mutsu AMS facility of the JAEA (Aomori Prefecture, Japan) for providing C isotope data of excellent quality. The study represents part of the doctoral dissertation research of B. Krajnc, which was supported by the Innovative schemes for co-financing of doctoral studies financed by the European Union through the European Social Fund.

References

  1. Allison CE, Francey RJ, Krummel PB (2003) δ13C in CO2 from sites in the CSIRO atmospheric research GASLAB air sampling network, in trends: a compendium of data on global change, carbon dioxide Inf. Anal. Cent., Oak Ridge Natl. Lab., U.S. Dep. of Energy, Oak Ridge, TN. http://cdiac.ornl.gov/trends/co2/allison-csiro/allcsiro-alt.html. Accessed 21 Mar 2015
  2. Bond-Lamberty B, Thomson A (2010) Temperature-associated increases in the global soil respiration record. Nature 464:579–582CrossRefGoogle Scholar
  3. Carmi I, Yakir D, Yechieli Y, Kronfeld J, Stiller M (2013) Variations in soil CO2 concentrations and isotopic values in a semi-arid region due to biotic and abiotic processes in the unsaturated zone. Radiocarbon 55:932–942CrossRefGoogle Scholar
  4. Čater M, Ogrinc N (2011) Soil respiration rates and δ13CCO2 in natural beech forest (Fagus sylvatica L.) in relation to stand structure. Isot Environ Health Stud 47:221–237. doi: 10.1080/10256016.2011.578214 CrossRefGoogle Scholar
  5. Cerling TE, Solomon DK, Quade J, Bowman JR (1991) On the isotopic composition of carbon in soil carbon dioxide. Geochim Cosmochim Acta 55:3403–3405. doi: 10.1016/0016-7037(91)90498-T CrossRefGoogle Scholar
  6. Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M, Jones C, Le Quéré C, Myneni RB, Piao S, Thornton P (2013) Carbon and other biogeochemical cycles. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, New York, pp 465–570Google Scholar
  7. Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173CrossRefGoogle Scholar
  8. Dörr H, Münnich KO (1986) Annual variations of the 14C content of soil CO2. Radiocarbon 2A:338–345CrossRefGoogle Scholar
  9. Ekblad A, Högberg P (2001) Natural abundance of 13C in CO2 respired from forest soils reveals speed of link between tree photosynthesis and root respiration. Oecologia 127:305–308. doi: 10.1007/s004420100667 CrossRefGoogle Scholar
  10. Emmerich WE (2003) Carbon dioxide fluxes in a semiarid environment with high carbonate soils. Agr Forest Meteorol 116:91–102. doi: 10.1016/S0168-1923(02)00231-9 CrossRefGoogle Scholar
  11. Etiope G, Lombardi S (1995) Evidence for radon transport by carrier gas through faulted clays in Italy. J Radioanal Nucl Chem 193:291–300. doi: 10.1007/BF02039886 CrossRefGoogle Scholar
  12. Etiope G, Martinelli G (2002) Migration of carrier and trace gases in the geosphere: an overview. Phys Earth Planet Inter 129:185–204. doi: 10.1016/S0031-9201(01)00292-8 CrossRefGoogle Scholar
  13. Fujiyoshi R, Haraki Y, Sumiyoshi T, Amano H, Kobal I, Vaupotič J (2009) Tracing the sources of gaseous components (222Rn, CO2 and its carbon isotopes) in soil air under a cool-deciduous stand in Sapporo, Japan. Environ Geochem Health 32:73–82. doi: 10.1007/s10653-009-9266-1 CrossRefGoogle Scholar
  14. Fujiyoshi R, Amano H, Yousuke S, Okamoto K, Sumiyoshi T, Kobal I, Vaupotič J (2012) Practical evaluation of carbon sources of forest soils in Slovenia from stable and radio-carbon isotope measurements. Environ Earth Sci 67:133–140. doi: 10.1007/s12665-011-1486-x CrossRefGoogle Scholar
  15. Högberg P, Buchmann N, Read DJ (2006) Comments on Yakov Kuzyakov’s review ‘sources of CO2 efflux from soil and review of partitioning methods’ [Soil Biology & Biochemistry 38, 425–448]. Soil Biol Biochem 38:2997–2998. doi: 10.1016/j.soilbio.2006.04.001 CrossRefGoogle Scholar
  16. Kardos R, Gregorič A, Jónás J, Vaupotič J, Kovács T, Ishimori Y (2015) Dependence of radon emanation of soil on lithology. J Radioanal Nucl Chem 304:1321–1327. doi: 10.1007/s10967-015-3954-3 CrossRefGoogle Scholar
  17. Knohl A, Werner RA, Geilmann H, Brand WA (2004) Kel-F (TM) discs improve storage time of canopy air samples in 10-mL vials for CO2-delta C-13 analysis. Rapid Commun Mass Spectrom 18:1663–1665CrossRefGoogle Scholar
  18. Kovács T, Szeiler G, Fábián F, Kardos R, Gregorič A, Vaupotič J (2013) Systematic survey of natural radioactivity of soil in Slovenia. J Environ Radioact 122:70–78. doi: 10.1016/j.jenvrad.2013.02.007 CrossRefGoogle Scholar
  19. Kozak K, Mazur J, Vaupotič J, Kobal I, Janik M, Kochowska E (2009) Calibration of the IJS-CRn and IFJ-PAN radon measuring devices in the IFJ-KR-600 radon chamber. Jožef Stefan Institute Report IJS-DP-10103Google Scholar
  20. Kuzyakov Y (2006) Sources of CO2 efflux from soil and review of partitioning methods. Soil Biol Biochem 38:425–448. doi: 10.1016/j.soilbio.2005.08.020 CrossRefGoogle Scholar
  21. Kuzyakov Y, Gavrichkova O (2010) Time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls. Global Change Biol 16:3386–3406CrossRefGoogle Scholar
  22. Lambert WJ, Aharon P (2011) Controls on dissolved inorganic carbon and δ13C in cave waters from DeSoto Caverns: implications for speleothem δ13C assessments. Geochim Cosmochim Acta 3:753–768. doi: 10.1016/j.gca.2010.11.006 CrossRefGoogle Scholar
  23. Levin I, Naegler T, Kromer B, Diehl M, Francey RJ, Gomez-Pelaez AJ, Steele PL, Wagenbach D, Weller R, Worthy DE (2010) Observations and modelling of the global distribution and long-term trend of atmospheric 14CO2. Tellus 62B:26–46CrossRefGoogle Scholar
  24. Liu W, Moriizumi J, Yamazawa H, Iida T (2006) Depth profiles of radiocarbon and carbon isotopic compositions of organic matter and CO2 in a forest soil. J Environ Radioact 90:210–223CrossRefGoogle Scholar
  25. Neznal M, Šmarda J (1991) Radon infiltration risk from the ground in Chaby, Prague. In: Barnet I (ed) Radon investigations in Czechoslovakia II. Geological Survey, Prague, pp 34–39Google Scholar
  26. Ogrinc N, Kanduč T, Krajnc B, Vilhar U, Simončič P (2016) Inorganic and organic carbon dynamics in forested soils developed on contrasting geology in Slovenia—a stable isotope approach. J Soils Sediments 16:382–395. doi: 10.1007/s11368-015-1255-7 CrossRefGoogle Scholar
  27. Placer L (2008) Principles of the tectonic subdivision of Slovenia. Geology 51:205–217. doi: 10.5474/geologija.2008.021 CrossRefGoogle Scholar
  28. Plestenjak G, Eler K, Vodnik D, Ferlan M, Čater M, Kanduč T, Simončič P, Ogrinc N (2012) Sources of soil CO2 in calcareous grassland with woody plant encroachment. J Soils Sediments 12:1327–1338. doi: 10.1007/s11368-012-0564-3 CrossRefGoogle Scholar
  29. Quindós-Poncela LS, Fernandez PL, Sainz C, Arteche J, Arozamena JG, George AC (2003) An improved scintillation cell for radon measurements. Nucl Instrum Method A 512:606–609. doi: 10.1016/S0168-9002(03)02049-7 CrossRefGoogle Scholar
  30. Reichstein M, Beer C (2008) Soil respiration across scales: the importance of a model–data integration framework for data interpretation. J Plant Nutrit Soil Sci 171:344–354CrossRefGoogle Scholar
  31. Serrano-Ortiz P, Domingo F, Cazorla A, Were A, Cuezva S, Villagarcıa L, Alados- Arboledas L, Kowalski AS (2009) Interannual CO2 exchange of a sparse Mediterranean shrubland on a carbonaceous substrate. J Geophys Res 114:G04015. doi: 10.1029/2009JG000983 CrossRefGoogle Scholar
  32. Serrano-Ortiz P, Roland M, Sanchez-Moral S, Janssens IA, Domingo F, Godderis Y, Kowalski AS (2010) Hidden, abiotic CO2 flows and gaseous reservoirs in the terrestrial carbon cycle: review and perspectives. Agric Forest Meteorol 150:321–329. doi: 10.1016/j.agrformet.2010.01.002 CrossRefGoogle Scholar
  33. Spötl C (2004) A simple method of soil gas stable carbon isotope analysis. Rapid Commun Mass Spectrom 18:1239–1242. doi: 10.1002/rcm.1468 CrossRefGoogle Scholar
  34. Stone R (2008) Have desert researchers discovered a hidden loop in the carbon cycle? Science 320:1409–1410CrossRefGoogle Scholar
  35. Torn MS, Davis S, Bird JA, Shaw MR, Conrad ME (2003) Automated analysis of C-13/C-12 ratios in CO2 and dissolved inorganic carbon for ecological and environmental applications. Rapid Commun Mass Spectrom 17:2675–2682. doi: 10.1002/rcm.1246 CrossRefGoogle Scholar
  36. Trumbore S (2006) Carbon respired by terrestrial ecosystems—recent progress and challenges. Global Change Biol 12:141–153CrossRefGoogle Scholar
  37. Urbančič M, Simončič P, Prus T, Kutnar L (2005) Atlas gozdnih tal Slovenije. Zveza gozdarskih društev Slovenije/GIS, LjubljanaGoogle Scholar
  38. Vaupotič J, Ančik M, Škofljanec M, Kobal I (1992) A method for determination of indoor radon concentrations using α-scintillation cells. J Environ Sci Health A 27:15–35. doi: 10.1016/0160-4120(88)90013-X Google Scholar
  39. Vaupotič J, Žvab P, Gregorič A, Kobal I, Kocman D, Kotnik J, Križman M (2008) Radon mapping in Slovenia based on its levels in soil gas. In: 33rd International geological congress abstract CD-ROM. X-CD Technologies, Oslo, pp EGG03742PGoogle Scholar
  40. Werth M, Kuzyakov Y (2008) Root-derived carbon in soil respiration and microbial biomass using 14C and 13C. Soil Biol Biochem 40:625–637. doi: 10.1016/j.soilbio.2007.09.022 CrossRefGoogle Scholar
  41. Werth M, Kuzyakov Y (2010) 13C fractionation at root-microorganisms-soil interface: a review and outlook for partitioning studies. Soil Biol Biochem 42:1372–1384. doi: 10.1016/j.soilbio.2010.04.009 CrossRefGoogle Scholar
  42. Wohlfahrt G, Fenstermaker LF, Arnone JA (2008) Large annual net ecosystem CO2 uptake of a Mojave Desert ecosystem. Glob Change Biol 14:1475–1487. doi: 10.1111/j.1365-2486.2008.01593.x CrossRefGoogle Scholar
  43. Xie J, Li Y, Zhai C, Li CZL (2008) CO2 absorption by alkaline soils and its implication to the global carbon cycle. Environ Geol 56:953–961. doi: 10.1007/s00254-008r-r1197-0 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Bor Krajnc
    • 1
  • Ryoko Fujiyoshi
    • 2
  • Janja Vaupotič
    • 1
    • 3
  • Hikaru Amano
    • 4
  • Yousuke Sakuta
    • 2
  • Asta Gregorič
    • 5
  • Nives Ogrinc
    • 1
    • 3
  1. 1.Jožef Stefan International Postgraduate SchoolLjubljanaSlovenia
  2. 2.Faculty of EngineeringHokkaido UniversitySapporoJapan
  3. 3.Department of Environmental SciencesJožef Stefan InstituteLjubljanaSlovenia
  4. 4.Japan Chemical Analysis CenterChibaJapan
  5. 5.Center for Atmospheric ResearchUniversity of Nova GoricaNova GoricaSlovenia

Personalised recommendations