Reactive ditches: A simple approach to implement denitrifying wood chip bioreactors to reduce nitrate exports into aquatic ecosystems?

  • Matthias Pfannerstill
  • Insa Kühling
  • Cindy Hugenschmidt
  • Michael Trepel
  • Nicola Fohrer
Thematic Issue
Part of the following topical collections:
  1. Water in Germany


Despite intensive efforts motivated by the European Water Framework Directive, many water bodies still suffer from poor water quality in Germany. Intensively drained agricultural areas are still a critical source for nitrate which is responsible for negative effects on aquatic ecosystems. Basic measures such as the fertiliser ordinance are expected to be not sufficient to completely eliminate nitrate exports via drainage tiles and ditches. Consequently, there is the demand to manage the reduction of nitrate concentrations with new additional end of pipe solutions. For this, the presented study focuses on a simply to implement reactive ditch for denitrification, which is installed into drainage ditches to reduce nitrate concentrations. An existing drainage ditch that is fed by tile drainage water was filled with wood chips to keep installation efforts as simple and cheap as possible. In situ parameters and nutrient concentrations were determined at the inflow and the outflow of the reactive ditch for 2 years. The results reveal a promising potential for wood chip-based filters to reduce nitrate concentrations by 28 % on average over all seasons. Within the filter, favourable conditions for denitrification were predominantly found without flooding of surrounding areas. Investigations revealed decreasing nitrate concentrations especially in cases of low flow rates and high temperatures. These encouraging results demonstrate the successful application of reactive ditches under German lowland conditions in general. Since tile drainages are installed for many agricultural areas in this region, there seems to be high potential for the application of this easily implementable type of bioreactor.


Wood chip filter Denitrification Bioreactor Nitrate Reactive ditch 



We are thankful to the State Agency for Agriculture, the Environment and Rural Areas of the federal state Schleswig-Holstein for co-funding our studies. Furthermore we thank J. Golon for his contribution of designing and implementing the reactive ditch system.


  1. Bednarek A, Szklarek S, Zalewski M (2014) Nitrogen pollution removal from areas of intensive farming—comparison of various denitrification biotechnologies. Ecohydrol Hydrobiol 14:132–141. doi: 10.1016/j.ecohyd.2014.01.005 CrossRefGoogle Scholar
  2. Blowes DW, Robertson WD, Ptacek CJ, Merkley C (1994) Removal of agricultural nitrate from tile-drainage effluent water using in-line bioreactors. J Contam Hydrol 15:207–221. doi: 10.1016/0169-7722(94)90025-6 CrossRefGoogle Scholar
  3. Christianson L, Bhandari A, Helmers M et al (2012) Performance evaluation of four field-scale agricultural drainage denitrification bioreactors in Iowa. Trans ASABE 55(6):2163–2174Google Scholar
  4. Christianson L, Helmers M, Bhandari A, Moorman T (2013) Internal hydraulics of an agricultural drainage denitrification bioreactor. Ecol Eng 52:298–307. doi: 10.1016/j.ecoleng.2012.11.001 CrossRefGoogle Scholar
  5. DüV (2006) Düngeverordnung in der Fassung der Bekanntmachung vom 27. Februar 2007 (BGBl. I S. 221), die zuletzt durch Artikel 5 Absatz 36 des Gesetzes vom 24. Februar 2012 (BGBl. I S. 212) geändert worden ist”Google Scholar
  6. ESRI (2015) World imagery, source: Esri, i-cubed, USDA, USGS, AEX, GeoEye, Getmapping, AeroGRID, IGN, IGP, UPR-EGP, and the GIS CommunityGoogle Scholar
  7. Fohrer N, Schmalz B (2012) Das UNESCO Ökohydrologie-Referenzprojekt Kielstau-Einzugsgebiet – nachhaltige Wasserressourcenmanagement und Ausbildung im ländlichen Raum. doi: 10.5675/HyWa_2012,4_1
  8. Fohrer N, Deunert F, Schmalz B (2008) Ansätze zur Integration von Dränageausträgen in die Abbildung des Landschaftswasser- und stoffhaushalts von Tieflandeinzugsgebieten. DWA-Themen Dränung – Nährstoffaustrag Flächenerfassung Manag 32–37Google Scholar
  9. GADM (2012) Global administrative areas - Boundaries without limits. Accessed 16 Dec 2015
  10. Holsten B, Bednarek A, Fier A, Fohrer N, Heckrath G, Höper H, Hugenschmidt C, Kjærgaard C, Krause B, Litz N, Matzinger A, Orlikowski D, Perillon C, Pfannerstill M, Rouault P, Schäfer W, Trepel M, Ubraniak M, Zalewski M (2012) Potentiale für den Einsatz von Nährstoff-Filtersystemen in Deutschland zur Verringerung der Nährstoffeinträge in Oberflächengewässer. Hydrol Wasserbewirtsch 56:4–15. doi: 10.5675/HyWa2012,1_1 Google Scholar
  11. IKSE (2015) Internationaler Bewirtschaftungsplan für die Flussgebietseinheit Elbe. Teil A, Aktualisierung 2015 für den Zeitraum 2016–2021. Magdeburg 149 pGoogle Scholar
  12. Izydorczyk K, Frątczak W, Drobniewska A et al (2013) A biogeochemical barrier to enhance a buffer zone for reducing diffuse phosphorus pollution—preliminary results. Ecohydrol Hydrobiol 13:104–112. doi: 10.1016/j.ecohyd.2013.06.003 CrossRefGoogle Scholar
  13. Kiesel J, Schmalz B, Fohrer N (2009) SEPAL—a simple GIS-based tool to estimate sediment pathways in lowland catchments. Adv Geosci 21:25–32. doi: 10.5194/adgeo-21-25-2009 CrossRefGoogle Scholar
  14. Kiesel J, Fohrer N, Schmalz B, White MJ (2010) Incorporating landscape depressions and tile drainages of a northern German lowland catchment into a semi-distributed model. Hydrol Process 24:1472–1486. doi: 10.1002/hyp.7607 CrossRefGoogle Scholar
  15. Krause Camilo B, Matzinger A, Litz N et al (2013) Concurrent nitrate and atrazine retention in bioreactors of straw and bark mulch at short hydraulic residence times. Ecol Eng 55:101–113. doi: 10.1016/j.ecoleng.2013.02.010 CrossRefGoogle Scholar
  16. LAWA (2014) Länderarbeitsgemeinschaft Wasser: Prognose der Auswirkungen einer nach Gewässerschutzaspekten novellierten Düngeverordnung auf die Qualität der Oberflächengewässer in Deutschland (Stand:15.09.2014). 30 pGoogle Scholar
  17. Long LM, Schipper LA, Bruesewitz DA (2011) Long-term nitrate removal in a denitrification wall. Agric Ecosyst Environ 140:514–520. doi: 10.1016/j.agee.2011.02.005 CrossRefGoogle Scholar
  18. MELUR (2015) Bewirtschaftungsplan (gem. Art. 13 EG-WRRL bzw. § 83 WHG) FGE Schlei/Trave 2. Bewirtschaftungszeitraum 2016–2021. Kiel 303 ppGoogle Scholar
  19. Moorman TB, Parkin TB, Kaspar TC, Jaynes DB (2010) Denitrification activity, wood loss, and N2O emissions over 9 years from a wood chip bioreactor. Ecol Eng 36:1567–1574. doi: 10.1016/j.ecoleng.2010.03.012 CrossRefGoogle Scholar
  20. Pfannerstill M, Hugenschmidt C, Trepel M, Fohrer N (2012) Reaktive Grabensysteme zur Reduktion des diffusen Stickstoffeintrags aus drainierten landwirtschaftlichen Flächen. Hydrol Wasserbewirtsch 56:203–214. doi: 10.5675/HyWa_2012,4_5 Google Scholar
  21. Pfannerstill M, Guse B, Fohrer N (2014) A multi-storage groundwater concept for the SWAT model to emphasize nonlinear groundwater dynamics in lowland catchments. Hydrol Process 28:5599–5612. doi: 10.1002/hyp.10062 CrossRefGoogle Scholar
  22. Pfannerstill M, Guse B, Reusser D, Fohrer N (2015) Process verification of a hydrological model using a temporal parameter sensitivity analysis. Hydrol Earth Syst Sci 19:4365–4376. doi: 10.5194/hess-19-4365-2015 CrossRefGoogle Scholar
  23. R Development Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Accessed 30 Oct 2015
  24. Rivett MO, Buss SR, Morgan P et al (2008) Nitrate attenuation in groundwater: a review of biogeochemical controlling processes. Water Res 42:4215–4232. doi: 10.1016/j.watres.2008.07.020 CrossRefGoogle Scholar
  25. Robertson WD, Blowes DW, Ptacek CJ, Cherry JA (2000) Long-term performance of in situ reactive barriers for nitrate remediation. Ground Water 38:689–695. doi: 10.1111/j.1745-6584.2000.tb02704.x CrossRefGoogle Scholar
  26. Schipper LA, McGill A (2008) Nitrogen transformation in a denitrification layer irrigated with dairy factory effluent. Water Res 42(10–11):2457–2464. doi: 10.1016/j.watres.2008.01.033 CrossRefGoogle Scholar
  27. Schipper LA, Robertson WD, Gold AJ et al (2010) Denitrifying bioreactors—an approach for reducing nitrate loads to receiving waters. Ecol Eng 36:1532–1543. doi: 10.1016/j.ecoleng.2010.04.008 CrossRefGoogle Scholar
  28. Schmidt CA, Clark MW (2012) Evaluation of a denitrification wall to reduce surface water nitrogen loads. J Environ Qual 41:724. doi: 10.2134/jeq2011.0331 CrossRefGoogle Scholar
  29. Seitzinger S, Harrison JA, Böhlke JK et al (2006) Denitrification across landscapes and waterscapes: a synthesis. Ecol Appl Publ Ecol Soc Am 16:2064–2090Google Scholar
  30. SRU (2015) NITROGEN: Strategies for resolving an urgent environmental problem. Sachverständigenrat Für Umweltfragen 12 pGoogle Scholar
  31. Trepel M (2016) Towards ecohydrological nutrient management for river basin districts. Ecohydrol Hydrobiol 16:92–98. doi: 10.1016/j.ecohyd.2016.03.001 CrossRefGoogle Scholar
  32. UBA (2014) Wasserwirtschaft in Deutschland. Teil 1: Grundlagen. Berlin 152 pGoogle Scholar
  33. Ulrich U, Schulz F, Hugenschmidt C, Fohrer N (2012) Vergleichende Messungen zu Herbizidausträngen auf drei unterschiedlichen Größenskalen. doi: 10.5675/HyWa_2012,4_6
  34. Warneke S, Schipper LA, Bruesewitz DA et al (2011a) Rates, controls and potential adverse effects of nitrate removal in a denitrification bed. Ecol Eng 37:511–522. doi: 10.1016/j.ecoleng.2010.12.006 CrossRefGoogle Scholar
  35. Warneke S, Schipper LA, Matiasek MG et al (2011b) Nitrate removal, communities of denitrifiers and adverse effects in different carbon substrates for use in denitrification beds. Water Res 45:5463–5475. doi: 10.1016/j.watres.2011.08.007 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of Natural Resource Conservation, Department of Hydrology and Water Resources ManagementKiel UniversityKielGermany
  2. 2.Working Group Sustainable Agro-EcosystemsUniversity of Applied Sciences OsnabrückOsnabrückGermany
  3. 3.Ministerium für Energiewende, Landwirtschaft, Umwelt und ländliche Räume des Landes Schleswig-HolsteinKielGermany
  4. 4.StadeGermany

Personalised recommendations