Advertisement

Risk hotspots for terrestrial plant invaders under climate change at the global scale

  • Ji-Zhong Wan
  • Chun-Jing Wang
  • Fei-Hai Yu
Original Article

Abstract

Terrestrial plant invaders (TPIs) have a large potential to threaten plant diversity under climate change. To prevent the spread of TPIs under climate change, we must identify the risk hotspots for TPIs. However, the risk hotspots for TPIs have not yet been explicitly addressed at the global scale under climate change. Here, we selected 336 TPIs from the Invasive Species Specialist Group list and used species distribution modelling and Hot Spot Analysis to map the risk hotspots of TPIs based on the terrestrial ecoregions in the current, low and high gas concentration scenarios. The risk hotspots of TPIs were mainly distributed in South America, Europe, Australia, New Zealand and northern and southern Africa. Climate change may decrease the areas of hotspots that allow for TPI expansion, but the potential distribution probabilities of TPIs may increase in the high concentration scenario. Furthermore, TPIs, particularly herbaceous and woody ones, might still expand into critical or endangered ecoregions of these risk hotspots in the current, low and high concentration scenarios. We also need to focus on the impact of TPI expansion on both vulnerable and relatively stable ecoregions due to the increasing potential distribution probabilities of TPIs in risk hotspots and should integrate climate change into the risk assessment of plant invasion in the vulnerable and relatively stable ecoregions.

Keywords

Plant invasion Climatic change GIS Risk hotpot Maxent modelling Ecoregion Hot Spot Analysis 

Notes

Acknowledgments

We thank the Fundamental Research Funds for the Central Universities (BLYJ201501; TD-JC-2013-1) and NSFC (31570413) for support.

Supplementary material

12665_2016_5826_MOESM1_ESM.docx (629 kb)
Supplementary material 1 (DOCX 630 kb)

References

  1. Adhikari D, Tiwary R, Barik SK (2015) Modelling hotspots for invasive alien plants in India. PLoS One 10:e0133665CrossRefGoogle Scholar
  2. Alagador D, Martins MJ, Cerdeira JO, Cabeza M, Araújo MB (2011) A probability-based approach to match species with reserves when data are at different resolutions. Biol Conserv 144:811–820CrossRefGoogle Scholar
  3. Araújo MB, Alagador D, Cabeza M, Nogués-Bravo D, Thuiller W (2011) Climate change threatens European conservation areas. Ecol Lett 14:484–492CrossRefGoogle Scholar
  4. Bai F, Chisholm R, Sang W, Dong M (2013) Spatial risk assessment of alien invasive plants in China. Environ Sci Technol 47:7624–7632CrossRefGoogle Scholar
  5. Beaumont LJ, Gallagher RV, Leishman MR, Hughes L, Downey PO (2014) How can knowledge of the climate niche inform the weed risk assessment process? A case study of Chrysanthemoides monilifera in Australia. Divers Distrib 20:613–625CrossRefGoogle Scholar
  6. Bellard C, Thuiller W, Leroy B, Genovesi P, Bakkenes M, Courchamp F (2013) Will climate change promote future invasions? Glob Change Biol 19:3740–3748CrossRefGoogle Scholar
  7. Bellard C, Leclerc C, Leroy B, Bakkenes M, Veloz S, Thuiller W, Courchamp F (2014) Vulnerability of biodiversity hotspots to global change. Glob Ecol Biogeogr 23:1376–1386CrossRefGoogle Scholar
  8. Bradley BA (2010) Assessing ecosystem threats from global and regional change: hierarchical modeling of risk to sagebrush ecosystems from climate change, land use and invasive species in Nevada, USA. Ecography 33:198–208CrossRefGoogle Scholar
  9. Bradley BA, Blumenthal DM, Wilcove DS, Ziska LH (2010a) Predicting plant invasions in an era of global change. Trends Ecol Evol 25:310–318CrossRefGoogle Scholar
  10. Bradley BA, Wilcove DS, Oppenheimer M (2010b) Climate change increases risk of plant invasion in the Eastern United States. Biol Invasions 12:1855–1872CrossRefGoogle Scholar
  11. Bradley BA, Blumenthal DM, Early R, Grosholz ED, Lawler JJ, Miller LP, Sorte CJ, D’Antonio CM, Diez JM, Dukes JS, Ibanez I, Olden JD (2012) Global change, global trade, and the next wave of plant invasions. Front Ecol Environ 10:20–28CrossRefGoogle Scholar
  12. Calabrese JM, Certain G, Kraan C, Dormann CF (2014) Stacking species distribution models and adjusting bias by linking them to macroecological models. Glob Ecol Biogeogr 23:99–112CrossRefGoogle Scholar
  13. Colautti RI, Barrett SC (2013) Rapid adaptation to climate facilitates range expansion of an invasive plant. Science 342:364–366CrossRefGoogle Scholar
  14. Diez JM, D’Antonio CM, Dukes JS, Grosholz ED, Olden JD, Sorte CJ, Blumenthal DM, Bradley BA, Early R, Ibáñez L, Jones SJ, Lawler JJ, Miller LP (2012) Will extreme climatic events facilitate biological invasions? Front Ecol Environ 10:249–257CrossRefGoogle Scholar
  15. Donaldson JE, Hui C, Richardson DM, Robertson MP, Webber BL, Wilson JR (2014) Invasion trajectory of alien trees: the role of introduction pathway and planting history. Glob Change Biol 20:1527–1537CrossRefGoogle Scholar
  16. Duursma DE, Gallagher RV, Roger E, Hughes L, Downey PO, Leishman MR (2013) Next-generation invaders? Hotspots for naturalised sleeper weeds in Australia under future climates. PLoS One 8:e84222CrossRefGoogle Scholar
  17. Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of Maxent for ecologists. Divers Distrib 17:43–57CrossRefGoogle Scholar
  18. Eskelinen A, Harrison S (2014) Exotic plant invasions under enhanced rainfall are constrained by soil nutrients and competition. Ecology 95:682–692CrossRefGoogle Scholar
  19. Fourcade Y, Engler JO, Rödder D, Secondi J (2014) Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PLoS One 9:e97122CrossRefGoogle Scholar
  20. Foxcroft LC, Jarošík V, Pyšek P, Richardson DM, Rouget M (2011) Protected-area boundaries as filters of plant invasions. Conserv Biol 25:400–405Google Scholar
  21. Gallagher RV, Duursma DE, O’Donnell J, Wilson PD, Downey PO, Hughes L, Leishman MR (2013) The grass may not always be greener: projected reductions in climatic suitability for exotic grasses under future climates in Australia. Biol Invasions 15:961–975CrossRefGoogle Scholar
  22. García-Roselló E, Guisande C, Manjarrés-Hernández A, González-Dacosta J, Heine J, Pelayo-Villamil P, González-Vilas L, Vari RP, Vaamonde A, Granado-Lorencio C, Lobo JM (2014) Can we derive macroecological patterns from primary global biodiversity information facility data? Glob Ecol Biogeogr 24:335–347CrossRefGoogle Scholar
  23. Gorenflo LJ, Romaine S, Mittermeier RA, Walker-Painemilla K (2012) Co-occurrence of linguistic and biological diversity in biodiversity hotspots and high biodiversity wilderness areas. Proc Natl Acad Sci USA 109:8032–8037CrossRefGoogle Scholar
  24. Hellmann JJ, Byers JE, Bierwagen BG, Dukes JS (2008) Five potential consequences of climate change for invasive species. Conserv Biol 22:534–543CrossRefGoogle Scholar
  25. Hijmans RJ (2012) Cross-validation of species distribution models: removing spatial sorting bias and calibration with a null model. Ecology 93:679–688CrossRefGoogle Scholar
  26. Kalusová V, Chytrý M, Kartesz JT, Nishino M, Pyšek P (2013) Where do they come from and where do they go? European natural habitats as donors of invasive alien plants globally. Divers Distrib 19:199–214CrossRefGoogle Scholar
  27. Kremer RJ (2014) Environmental implications of herbicide resistance: soil biology and ecology. Weed Sci 62:415–426CrossRefGoogle Scholar
  28. Liang L, Clark JT, Kong N, Rieske LK, Fei S (2014) Spatial analysis facilitates invasive species risk assessment. Forest Ecol Manag 315:22–29CrossRefGoogle Scholar
  29. Meier ES, Dullinger S, Zimmermann NE, Baumgartner D, Gattringer A, Hülber K (2014) Space matters when defining effective management for invasive plants. Divers Distrib 20:1029–1043CrossRefGoogle Scholar
  30. Melin A, Rouget M, Midgley JJ, Donaldson JS (2014) Pollination ecosystem services in South African agricultural systems: review article. S Afr J Sci 110:25–33CrossRefGoogle Scholar
  31. Merow C, Smith MJ, Silander JA (2013) A practical guide to Maxent for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36:1058–1069CrossRefGoogle Scholar
  32. O’Donnell J, Gallagher RV, Wilson PD, Downey PO, Hughes L, Leishman MR (2012) Invasion hotspots for non-native plants in Australia under current and future climates. Glob Change Biol 18:617–629CrossRefGoogle Scholar
  33. Olson DM, Dinerstein E (1998) The Global 200: a representation approach to conserving the Earth’s most biologically valuable ecoregions. Conserv Biol 12:502–515CrossRefGoogle Scholar
  34. Olson DM, Dinerstein E, Wikramanayake D, Burgess D, Powell G, Underwood E, Damico J, Itoua I, Strand H, Morrison J, Loucks C, Allnutt T, Ricketts T, Kura Y, Lamoreux J, Wettengel W, Hedao P, Kassem K (2001) Terrestrial ecoregions of the world: a new map of life on earth a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51:933–938CrossRefGoogle Scholar
  35. Perrings C, Dehnen-Schmutz K, Touza J, Williamson M (2005) How to manage biological invasions under globalization. Trends Ecol Evol 20:212–215CrossRefGoogle Scholar
  36. Richardson DM, Rejmánek M (2011) Trees and shrubs as invasive alien species—a global review. Divers Distrib 17:788–809CrossRefGoogle Scholar
  37. Saupe EE, Hendricks JR, Townsend Peterson A, Lieberman BS (2014) Climate change and marine molluscs of the western North Atlantic: future prospects and perils. J Biogeogr 41:1352–1366CrossRefGoogle Scholar
  38. Seebens H, Essl F, Dawson W, Fuentes N, Moser D, Pergl J, Pyšek P, van Kleunen M, Weber E, Winter M, Blasius B (2015) Global trade will accelerate plant invasions in emerging economies under climate change. Glob Change Biol 21:4128–4140CrossRefGoogle Scholar
  39. Spear D, Foxcroft LC, Bezuidenhout H, McGeoch MA (2013) Human population density explains alien species richness in protected areas. Biol Conserv 159:137–147CrossRefGoogle Scholar
  40. Thuiller W, Richardson DM, Pyšek P, Midgley GF, Hughes GO, Rouget M (2005) Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Glob Change Biol 11:2234–2250CrossRefGoogle Scholar
  41. Turner KG, Hufbauer RA, Rieseberg LH (2014) Rapid evolution of an invasive weed. New Phytol 202:309–321CrossRefGoogle Scholar
  42. Václavík T, Meentemeyer RK (2009) Invasive species distribution modeling (iSDM): are absence data and dispersal constraints needed to predict actual distributions? Ecol Model 220:3248–3258CrossRefGoogle Scholar
  43. Vicente JR, Fernandes RF, Randin CF, Broennimann O, Gonçalves J, Marcos B, Pôcas I, Alves P, Guisan A, Honrado JP (2013) Will climate change drive alien invasive plants into areas of high protection value? An improved model-based regional assessment to prioritise the management of invasions. J Environ Manag 131:185–195CrossRefGoogle Scholar
  44. Wilson JR, Dormontt EE, Prentis PJ, Lowe AJ, Richardson DM (2009) Something in the way you move: dispersal pathways affect invasion success. Trends Ecol Evol 24:136–144CrossRefGoogle Scholar
  45. Wisz MS, Hijmans RJ, Li J, Peterson AT, Graham CH, Guisan A, NCEAS Predicting Species Distributions Working Group (2008) Effects of sample size on the performance of species distribution models. Divers Distrib 14:763–773CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of Nature ConservationBeijing Forestry UniversityBeijingChina

Personalised recommendations