Hydrochemical and sedimentological dynamics in a subtropical plain river: assessment by multivariate statistical analysis

  • Paola A. SuárezEmail author
  • Marisol Vega
  • Rafael Pardo
  • Oscar Orfeo
  • José Luis García Cuesta
  • Alicia Ronco
Thematic Issue
Part of the following topical collections:
  1. 3RAGSU


Understanding the transport dynamics of sediments and soluble components is critical when ecosystems could be adversely affected. This study examined some environmental factors influencing the spatial and temporal variations of water–sediment interactions in Negro River, northeast of Argentina, a subtropical plain fluvial system with anthropogenic influence. Samples of water and bottom sediments were collected from four sampling stations in four sampling campaigns spread over 2 years. Chemical parameters, including pH, conductivity, major ions, concentration of suspended sediments, extractable major cations and particle size of sediments, were determined. The experimental data were interpreted by classical hydrogeochemical methods and statistical methods. Multivariate statistical tools were applied to reduce the dimensionality of the data set and to evaluate the relative importance of combinations of environmental variables on sediment dynamics. The results showed that the variability of the hydrochemistry and the sediment chemistry is controlled by longitudinal and seasonal factors, whereas differences across the river section were nonsignificant. The concentration of suspended solids and the abundance of fine-grained materials in bottom sediments were inversely correlated with the concentration of some metals with agglutinant and coagulant properties in sediments. This corroborates the presence of fine particle aggregates, also evidenced by classical grain-size analysis. Thus, particle disaggregation by chemical methods is not recommended, as it could lead to misinterpretation when the objective is to evaluate the dynamics of sediments in natural environments. This study highlights the importance of analyzing multiple dimensions (spatial and temporal) to understand the dynamics of fluvial sediments, especially in plain rivers.


Chaco—Argentina Transport processes Plain rivers Multivariate analysis Principal component analysis 



The study was funded by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.


  1. Abarca FJ (2007) Técnicas para evaluación y monitoreo del estado de humedales y otros ecosistemas acuáticos. In: Sánchez O, Herzig M, Peters E, Márquez R, Zambrano L (eds) Perspectivas sobre conservación de ecosistemas acuáticos en México. Secretaría de Medio Ambiente y Recursos Naturales, Intituto Nacional de Ecología, US Fish & Wildlife Service, Mexico, pp 113–144Google Scholar
  2. Ackermann F, Schubert B (2007) Trace metals as indicators for the dynamics of (suspended) particulate matter in the tidal reach of the River Elbe. In: Westrich B, Forstner U (eds) Sediment dynamics and pollutant mobility in rivers: An interdisciplinary approach. Springer, Berlin, pp 296–304Google Scholar
  3. Administración Provincial del Agua, Provincia del Chaco-Argentina (APA) (2010) Accessed 27 May 2015
  4. Anderson CA, Bro R (2000) The N-way toolbox for MATLAB. Chemom Intell Lab Syst 52:1–4CrossRefGoogle Scholar
  5. APHA, AWWA, WEF (1998) Standard methods for examination of water and wastewater. American Public Health Association, Washington, DCGoogle Scholar
  6. Argollo J, Iriondo MH (2008) El Cuaternario de Bolivia y regiones vecinas. Museo Provincial de Ciencias Naturales Florentino Ameghino, Santa FéGoogle Scholar
  7. Berlamont J, Ockenden M, Toorman E, Winterwero J (1993) The characterization of cohesive sediments properties. Coast Eng 21(1–3):105–128. doi: 10.1016/0378-3839(93)90047-C CrossRefGoogle Scholar
  8. Bielsa L, Fratti R (1981) Determinación del comportamiento del sistema natural y modificado con obras en temas referentes a calidad de agua. Convenio Bajos Submeridionales, Consejo Federal de Inversiones, Santa Fe, ArgentinaGoogle Scholar
  9. Blasi A (1981) Relación tamaño de grano-selección en sedimentos actuales. Asoc Min Petr Sed Rev 12(1–2):1–10Google Scholar
  10. Bonetto C, Villar C, de Cabo L, Vaithiyanathan P (1998) Hydrochemistry of a large flodplain river. Verh Int Ver Limnol 26:899–902Google Scholar
  11. Bro R (1997) PARAFAC. Tutorial and applications. Chemometr Intell Lab Syst 38:149–201. doi: 10.1016/S0169-7439(97)00032-4 CrossRefGoogle Scholar
  12. Cardenas MB, Wilson JL (2007) Exchange across a sediment–water interface with ambient groundwater discharge. J Hydrol 346:69–80. doi: 10.1016/j.jhydrol.2007.08.019 CrossRefGoogle Scholar
  13. Chae GT, Yun ST, Mayer B et al (2007) Fluorine geochemistry in bedrock groundwater of South Korea. Sci Total Environ 385:272–283CrossRefGoogle Scholar
  14. Chagas GG, Suzuki MS (2005) Variação sazonal da hidroquímica em uma lagoa costeira tropical (Lagoa do Açu, Brasil). Braz J Biol 65(4):597–607CrossRefGoogle Scholar
  15. Cid FD, Antón RI, Pardo R, Vega M, Caviedes-Vidal E (2011) Modelling spatial and temporal variations in the water quality of an artificial water reservoir in the semiarid midwest of Argentina. Anal Chim Acta 705:243–252. doi: 10.1016/j.aca.2011.06.013 CrossRefGoogle Scholar
  16. Depetris PJ, Pasquini AI (2007) The geochemistry of the Paraná river: an overview. In: Iriondo MH (ed) The middle paraná river: limnology of a subtropical wetland, Berlin, pp 143–174Google Scholar
  17. Dixon W, Chiswell B (1996) Review of aquatic monitoring program design. Water Res 30:1935–1948. doi: 10.1016/0043-1354(96)00087-5 CrossRefGoogle Scholar
  18. Domínguez-Chicas A, Kretzschmar T, Núñez-Sánchez F (2004) Velocidades de sedimentación en aguas pluviales de Cd. Juárez, Chihuahua, México. Revista Mexicana de Ciencias Geológicas 21(3):412–420Google Scholar
  19. Droppo IG, Leppard GG, Flannigan DT, Liss SN (1997) The freshwater floc: a functional relationship of water and organic and inorganic floc constituents affecting suspended sediment properties. Water Air Soil Pollut 99:43–54. doi: 10.1007/BF06843 Google Scholar
  20. Fertonani M, Prendes H (1983) Hidrología en áreas de llanura: aspectos conceptuales, teóricos y metodológicos. Coloquio de Olavarría de Hidrología de las grandes llanuras, UNESCO, Buenos Aires, Argentina, pp 119–156Google Scholar
  21. Friedman GM, Sanders JE (1978) Principles of Sedimentology. Wiley Interscience, New YorkGoogle Scholar
  22. Galehouse JS (1971) Sedimentation analysis. In: Carver RE (ed) Procedures in Sedimentary Petrology. Wiley Interscience, New York, pp 69–93Google Scholar
  23. Geology Atlas of Europe (GAE) (2015) In: Salminen R (ed) Parte 1: background information, methodology and maps. Accessed 26 May 2015
  24. Habibi M (1994) Sediment transport estimation methods in river systems. PhD Thesis. Univ. of Wollongong. Accessed 26 May 2015
  25. Hari P, Björklund A, Rita H, Ylimartimo A (1991) Relation between till geochemistry and the occurence of scleroderris canker in Finland. Environ Geochem North Europe Geol Surv Finl 9:169–175Google Scholar
  26. Helena B, Pardo R, Vega M, Barrado E, Fernandez JM, Fernandez L (2000) Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Wat Res 34(3):807–816. doi: 10.1016/S0043-1354(99)00225-0 CrossRefGoogle Scholar
  27. Horowitz AJ (1991) A primer on trace metal-sediment chemistry. Geological Survey Water-Supply. Lewis Public. Inc., ChelseaGoogle Scholar
  28. Huang J, Hilldale RC, Greimann BP (2006) Cohesive Sediment Transport. In: Yang CT (ed) Erosion and sedimentation manual. Reclamation managing water in the west. Department of the Interior Bureau of Reclamation, Colorado, pp 1–54Google Scholar
  29. Ingram RL (1971) Sieve analysis. In: Carver RE (ed) Procedure in sedimentary petrology. Wiley, New York, pp 49–68Google Scholar
  30. Kumarasamy P, James RA, Dahms HU, Buyon CW, Ramesh R (2014) Multivariate water quality assessment from the Tamiraparani river basin, Southern India. Environ Earth Sci 71:2441–2451. doi: 10.1007/s12665-013-2644-0 CrossRefGoogle Scholar
  31. Lafleur AE, Marea Llanos M, Santa Cruz JN (1980) Métodos granulométricos y determinaciones texturales. Normas y procedimientos. Instituto Nacional de Ciencia y Tecnología Hídricas, Buenos Aires, ArgentinaGoogle Scholar
  32. Lancelle HG, Longoni CA, Ramos AO, Caceres JR (1986) Caracterización físico-química de ambientes acuáticos permanentes y temporarios del Chaco Oriental. Revista Ambiente Subtropical, pp 73–91Google Scholar
  33. Ledesma LL, Zurita JJ (1995) Los suelos de la Provincia del Chaco: Argentina. Report, INTA, Chaco, p 164Google Scholar
  34. Massart DL, Vandeginste BGM, Buydens LMC, De Jong S, Lewi PJ, Smeyers-Verbeke J (1988) Handbook of chemometrics and qualimetrics: part B. Elsevier, AmsterdamGoogle Scholar
  35. McLaren P, Bowles D (1984) The effects of sediment transport on grain-size distributions. J Sediment Petrol 5(4):457–470Google Scholar
  36. McManus J (1988) Grain size determination and interpretation. In: Tucker M (ed) Techniques in sedimentology. Blackwell, Oxford, pp 63–85Google Scholar
  37. Mehta AJ, Hayter EJ, Parker WR, Krone RB, Teeter AM (1989) Cohesive sediment transport. Process Descr J Hydraul Eng 115(8):1076–1093. doi: 10.1061/(ASCE)0733-9429(1989)115:8(1076) CrossRefGoogle Scholar
  38. Ministerio de Salud y Ambiente de la Nación (MSAN), Organización Panamericana de la Salud (OPS), Prefectura Naval Argentina (PNA), Universidad Nacional de La Plata (UNLP) (2005) Caracterización sanitaria y ambiental de las aguas en tramos específicos de los Ríos Paraná y Paraguay y sus afluentes. ReportGoogle Scholar
  39. Morello J (1983) El gran Chaco: el proceso de expansión de la frontera agropecuaria desde el punto de vista ecológico ambiental. In: Centro Internacional de Formación en Ciencias Ambientales (eds) Expansión de la frontera agropecuaria y medio ambiente en América Latina. Madrid, pp 343–396Google Scholar
  40. Nanson GC, Gibling MR (2003) Rivers and alluvial fans. In: Middleton G (ed) Major article for encyclopedia of sediments and sedimentary rocks. Kluwer, Berlin, pp 925–952. doi: 10.1007/978-1-4020-3609-5_173
  41. Neiff JJ, Orfeo O (2003) Aporte de materia orgánica de los humedales a ríos de sabana subtropical del Chaco, Argentina. In: Neiff JJ (ed) Humedales de Iberoamérica: Argentina. Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo, CYTED, La Habana, pp 142–152Google Scholar
  42. Ogwueleka TC (2015) Use of multivariate statistical techniques for the evaluation of temporal and spatial variations in water quality of the Kaduna River, Nigeria. Environ Monit Assess 187:137. doi: 10.1007/s10661-015-4354-4 CrossRefGoogle Scholar
  43. Orfeo O (1999) Sedimentological characteristics of small rivers with loessic headwaters in the Chaco, South America. Quat Int. doi: 10.1016/S1040-6182(99)00024-5
  44. Orfeo O (2006) Dynamics of sediment transport in two subtropical plain rivers of South America. Zeitschrift Für Geomorphologie 145:229–241Google Scholar
  45. Organization of American States (OAS) (1977) Cuenca del Plata: Estudio para su Planificación y Desarrollo. República Argentina, Cuenca del Río Bermejo II, Cuenca Inferior. Secretaría General de la Organización de los Estados Americanos, Washington, D.C. Accessed 09 June 2016
  46. Paoli C, Giacosa R (1983) Necesidades de investigaciones hidrológicas en áreas de llanuras. Coloquio de Olavarría de Hidrología de las grandes llanuras, UNESCO, Buenos Aires, Argentina, pp 395–431Google Scholar
  47. Pardo R, Vega M, Debán L, Cazurro C, Carretero C (2008) Modelling of chemical fractionation patterns of metals in soils by two-way and three-way principal component analysis. Anal Chimica Acta 606:26–36. doi: 10.1016/j.aca.2007.11.004 CrossRefGoogle Scholar
  48. Patiño C, Orfeo O (1986) Aproximación al conocimiento del proceso de erosión del suelo en el Chaco Oriental. Revista Ambiente Subtropical, pp 47–59Google Scholar
  49. Patiño C, Orfeo O (1997) Cambios en la calidad del agua de los ríos Negro y Salado (Provincia del Chaco, Argentina), en relación con su régimen hidrológico y salinidad. Comunicaciones de la Secretaría General de Ciencia y Técnica. Accessed 27 May 2015
  50. Pedrozo F, Orfeo O (1986) Estudio sedimentológico de ambientes fluviales del Chaco Oriental. Rev Ambiente Subtropical 1:60–72Google Scholar
  51. Perillo G (2003) Dinámica del transporte de sedimentos. Asociación Argentina de Sedimentología, Publicación Especial 2. La Plata, ArgentinaGoogle Scholar
  52. Piper AM (1944) A graphic procedure in the geochemical interpretation of water-analyses. Am Geoph Union Transv 25:914–923CrossRefGoogle Scholar
  53. Poi de Neiff A, Patiño C, Neiff JJ, Ramos AO (2003) Calidad del agua en el tramo bajo del río Negro (Chaco, Argentina). FACENA 19:67–85Google Scholar
  54. Porta J, Lopez-Acevedo M, Roquero De Laburu C (2003) Edafología para la agricultura y el medio ambiente. Mundi Prensa, EspañaGoogle Scholar
  55. Pravdova V, Walczak B, Massart DL, Robberecht H, Van Cauwenbergh R, Hendrix P, Delstra H (2001) Three-way principal component analysis for the visualization of trace elemental patterns in vegetables after different cooking procedures. J Food Comp Anal 14(2):207–225. doi: 10.1006/jfca.2000.0971 CrossRefGoogle Scholar
  56. RAMSAR (2015) Secretaría de Ambiente y Desarrollo Sustentable de la Nación. Accessed 27 May 2015
  57. Rodrigues PMSM, Rodrigues RMM, Costa BHF, Tavares Martins AAL, Esteves da Silva JCG (2010) Multivariate analysis of the water quality variation in the Serra da Estrela (Portugal) Natural Park as a consequence of road deicing with salt. Chemometr Intell Lab Syst 102(2):130–135. doi: 10.1016/j.chemolab.2010.04.014 CrossRefGoogle Scholar
  58. Ruberto AR (1999) Hidroquímica de la cuenca del río Negro (Chaco). Thesis UNNE. Accessed 27 May 2015
  59. Singh KP, Malik A, Singh VK, Sinha S (2006) Multi-way data analysis of soils irrigated with wastewater-A case study. Chemometr Intell Lab Syst 83:1–12CrossRefGoogle Scholar
  60. Smilde A, Bro R, Geladi P (2004) Multi-way analysis with applications in the chemical sciences. Wiley, EnglandCrossRefGoogle Scholar
  61. Smith GD (1986) The guy smith interviews: rationale for concepts in soil taxonomy. SMSS Tech. Mon. No 11 SCS-USDA. Accessed 27 May 2015
  62. Spalletti LA (1986) Nociones sobre transporte y depositación de sedimentos clásticos. Universidad Nacional de La Plata, Serie Técnica y Didáctica 13, La Plata, ArgentinaGoogle Scholar
  63. Stanimirova I, Zehl K, Massart DL, Vander Heyden Y, Einax JW (2006) Chemometric analysis of soil pollution data using the Tucker N-way method. Anal Bioanal Chem 385(4):771–779. doi: 10.1007/s00216-006-0445-y CrossRefGoogle Scholar
  64. Suárez P (2012) Dinámica de elementos solubles del río Negro (Provincia del Chaco, Argentina) y su relación con los sedimentos fluviales. PhD Thesis. Repositorio Univ. of Valladolid. Accessed 27 May 2015
  65. Suárez P, Orfeo O (2015) Agregación de sedimentos en una cuenca de llanura: utilización del Microscopio Electrónico de Barrido como herramienta de evaluación. Rev. Estudios Geológicos, vol 71, no 2. doi: 10.3989/egeol.42054.366
  66. Suárez P, Sartirana M, Orfeo O (2010) Caracteres sedimentológicos de ambientes fluviales de la llanura subtropical chaqueña (Argentina). Acta Geológica Lilloana 22(1):34–45Google Scholar
  67. Symader W, Bierl R, Kurtenbach A, Krein A (2007) The relevance of river bottom sediments for the transport of cohesive particles and attached contaminants. In: Westrich B, Forstner U (eds) Sediment dynamics and pollutant mobility in rivers: An interdisciplinary approach. Springer, Berlin, pp 269–279CrossRefGoogle Scholar
  68. Thomas CW, Aitchison J (2006) Log-rations and geochemical discrimination of Scottish Dalradian limostones: a case. Geol Soc Spec Pub 264:25–41CrossRefGoogle Scholar
  69. United States Environmental Protection Agency (USEPA) (1994) Test method 1312: synthetic precipitation leaching procedure. SW-846 Test methods for evaluating solid waste: physical/chemical methods compendium. USEPA, Washington DCGoogle Scholar
  70. Vega M, Pardo R, Barrado E, Debán L (1998) Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Wat Res 32(12):3581–3592. doi: 10.1016/s0043-1354(98)00138-9 CrossRefGoogle Scholar
  71. Viles HA, Goudie AS (2003) Interannual, decadal and multidecadal scale climatic variability and geomorphology. Earth Sci Rev 61(1–2):105–131. doi: 10.1016/S0012-8252(02)00113-7 CrossRefGoogle Scholar
  72. Villar C, Bonetto C (2000) Chemistry and nutrient concentrations of the lower Paraná river and its floodplain marshes during extreme flooding. Arch Hydrobiol 148(3):461–479CrossRefGoogle Scholar
  73. Wenning RJ, Erickson GA (1994) Interpretation and analysis of complex environmental data using chemometric methods. TrAC Trends Anal Chem 13(10):446–457. doi: 10.1016/0165-9936(94)85026-7 CrossRefGoogle Scholar
  74. Wiens JA (2002) Riverine landscapes: taking landscape ecology into the water. Freshw Biol 47:501–515. doi: 10.1046/j.1365-2427.2002.00887.x CrossRefGoogle Scholar
  75. Zhu Y, Lu JY, Liao HZ, Wang JS, Fan BL, Yao SM (2008) Research on cohesive sediment erosion by flow: an overview. Sci China Ser E Technol Sci 51(11):2001–2012. doi: 10.1007/s11431-008-0232-4 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Paola A. Suárez
    • 1
    Email author
  • Marisol Vega
    • 2
  • Rafael Pardo
    • 2
  • Oscar Orfeo
    • 1
  • José Luis García Cuesta
    • 3
  • Alicia Ronco
    • 4
  1. 1.CECOAL, Facultad de Ciencias Exactas Naturales y AgrimensuraUniversidad Nacional del Nordeste, CONICETCorrientesArgentina
  2. 2.Departamento de Química Analítica, Facultad de CienciasUniversidad de ValladolidValladolidSpain
  3. 3.Departamento de Geografía, LACASIG, Facultad de Filosofía y LetrasUniversidad de ValladolidValladolidSpain
  4. 4.Departamento de Química, Facultad de Ciencias Exactas, Centro de Investigaciones del Medio AmbienteUniversidad Nacional de La Plata, CONICETLa PlataArgentina

Personalised recommendations