Advertisement

The role of physical and biological processes in aquifers and their importance on groundwater vulnerability to nitrate pollution

  • Manuela LasagnaEmail author
  • Domenico Antonio De Luca
  • Elisa Franchino
Thematic Issue
Part of the following topical collections:
  1. Groundwater Vulnerability

Abstract

Currently, diffuse pollution by nitrate is considered one of the main causes of groundwater quality deterioration. Many methodologies have been suggested to map aquifer vulnerability to nitrate pollution; however, no standard method has yet been established. Many proposed methods only take into account the aquifer’s protection and do not consider the physical or chemical processes in groundwater. More specifically, recent studies indicate that the fate and concentration of nitrates in aquifers mainly depend on the following: (a) the efficiency of natural attenuation (e.g. biological denitrification), (b) the physical processes of attenuation (e.g. dilution). Both the processes can lower the nitrate levels in groundwater. The aim of this research is to describe the features and role of these processes in aquifers. According to previous studies and our results, dilution and denitrification occurring in aquifers have a key role in the attenuation of nitrate. More specifically, the occurrence and effectiveness of denitrification were evaluated in a plain area in NW Italy through nitrogen isotopic fractionation analysis; the volumetric flow rate per unit width perpendicular to the flow direction, which is a function of the hydraulic gradient, hydraulic conductivity and aquifer thickness, was instead used for the assessment of nitrate attenuation capacity by means of the dilution process. Knowledge and understanding of these processes is essential to the identification of areas where groundwater is more prone to contamination. Thus, the evaluation of groundwater vulnerability to nitrate contamination cannot be separated from the comprehension of these processes.

Keywords

Nitrate Dilution Denitrification Aquifer vulnerability Italy 

Notes

Acknowledgments

Nitrate isotopic analysis was supported financially by Fondazione Cassa di Risparmio di Torino under the project “Valutazione dell’origine della contaminazione da nitrati nelle acque sotterranee della pianura piemontese”.

References

  1. Aller L, Bennet T, Lehr JH, Petty RJ, Hacket G (1987) DRASTIC: a standardized system for evaluating ground water pollution potential using hydrogeologic settings. NWWA/EPA Ser. EPA 600/287035Google Scholar
  2. Almasri MN (2007) Nitrate contamination of groundwater: a conceptual management framework. Environ Impact Asses 27(3):220–242CrossRefGoogle Scholar
  3. Andersen LJ, Gosk E (1989) Applicability of vulnerability maps. Environ Geol Water Sci 13(1):39–43CrossRefGoogle Scholar
  4. Antonakos AK, Lambrakis NJ (2007) Development and testing of three hybrid methods for the assessment of aquifer vulnerability to nitrates, based on the drastic model, an example from NE Korinthia, Greece. J Hydrol 333(2):288–304CrossRefGoogle Scholar
  5. Aravena R, Robertson WD (1998) Use of multiple isotope tracers to evaluate denitrification in ground water: study of nitrate from a largeflux septic system plume. Ground Water 36:975–982CrossRefGoogle Scholar
  6. ASTM (2002) Standard guide for selection of methods for assessing ground water or aquifer sensitivity and vulnerability. ASTM D6030-96, ASTM, PhiladelphiaGoogle Scholar
  7. Baalousha H (2010) Assessment of a groundwater quality monitoring network using vulnerability mapping and geostatistics: a case study from Heretaunga Plains, New Zealand. Agric Water Manag 97(2):240–246CrossRefGoogle Scholar
  8. Barbero T, De Luca DA, Forno MG, Masciocco L, Massazza G (2007) Stratigraphic revision of the subsoil of the Southern Turin plain for hydrogeologic purposes. Mem Descr Carta Geol It APAT Roma 76:9–16Google Scholar
  9. Bateman EJ, Baggs EM (2005) Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biol Fert Soils 41:379–388CrossRefGoogle Scholar
  10. Borin M, Bigon E (2002) Abatement of NO3-N concentration in agricultural waters by narrow buffer strips. Environ Pollut 117(1):165–168CrossRefGoogle Scholar
  11. Bortolami GC, Braga G, Colombetti A, Dal Prà A, Francani V, Francavilla F, Giuliano G, Manfredini M, Pellegrini M, Petrucci F, Pozzi R, Stefanini S (1978) Hydrogeological features of the Po Valley (Northern Italy). In: Proceedings of the IAHS conference on hydrogeology of great sedimentary basins, Budapest, Hungary, pp 304–321Google Scholar
  12. Bove A, Casaccio D, Destefanis E, De Luca DA, Lasagna M, Masciocco L, Ossella L, Tonussi M (2005) Idrogeologia della pianura piemontese “Hydrogeology of Piemonte plain”. Regione Piemonte, Mariogros Industrie Grafiche S.p.A., Torino, 15 p. +1 CD RomGoogle Scholar
  13. Burigana E, Giupponi C, Bendoricchio G (2003) Nitrogen surplus as indicator of agricultural pollution impact in the Venice Lagoon Watershed. In: Bruen M (ed) Diffuse pollution and river basin management. Proceedings of the 7th IWA international conference, Dublin. IWA, pp 171–176Google Scholar
  14. Burow KR, Nolan BT, Rupert MG, Dubrovsky NM (2010) Nitrate in groundwater of the United States, 1991–2003. Environ Sci Technol 44(13):4988–4997CrossRefGoogle Scholar
  15. Burt TP, Matchett LS, Goulding KWT, Webster CP, Haycock NE (1999) Denitrification in riparian buffer zones: The role of floodplain hydrology. Hydrol. Processes 13:1451–1463CrossRefGoogle Scholar
  16. Canavese P, De Luca DA, Masciocco L (2004) La rete di monitoraggio delle acque sotterranee delle aree di pianura della Regione Piemonte: quadro idrogeologico. PRISMAS: Il monitoraggio delle acque sotterranee nella Regione Piemonte, Regione PiemonteGoogle Scholar
  17. Carraro F (1996) Revisione del Villafranchiano nell’area-tipo di Villafranca d’Asti (The Villafranchian in the Villafranca d’Asti type-area: a revision). Il Quaternario It Journ Quatern Sc 9(1):5–120Google Scholar
  18. Carter J, Hsaio Y, Spiro S, Richardson D (1995) Soil and sediment bacteria capable of aerobic nitrate respiration. Appl Environ Microb 61:2852–2858Google Scholar
  19. Castagna SED, De Luca DA, Lasagna M (2015a) Eutrophication of Piedmont quarry lakes (north-western Italy): hydrogeological factors, evaluation of trophic levels and management strategies. J Env Assmt Pol Mgmt 17:4. doi: 10.1142/S1464333215500362 CrossRefGoogle Scholar
  20. Castagna SED, Dino GA, Lasagna M, De Luca DA (2015b) Environmental issues connected to the quarry lakes and chance to reuse fine materials deriving from aggregate treatments. In: Lollino G et al (eds) Engineering geology for society and territory, vol 5, Urban Geology, Sustainable planning and landscape exploitation. Springer International Publishing, Switzerland, pp 71–74. doi: 10.1007/978-3-319-09048-1_13
  21. Chen SK, Jang CS, Peng YH (2013) Developing a probability-based model of aquifer vulnerability in an agricultural region. J Hydrol 486:494–504CrossRefGoogle Scholar
  22. Chilton J, Schmoll O, Appleyard S (2006) Assessment of groundwater pollution potential. In: Schmoll L, Howard G, Chilton J, Chorus I (eds) Protecting groundwater for health managing the quality of drinking-water sources. World Health Organization, IWA publishing, LondonGoogle Scholar
  23. Choi WJ, Lee SM, Ro HM (2003) Evaluation of contamination sources of groundwater NO3 using nitrogen isotope data: a review. Geosci J 7:81–87CrossRefGoogle Scholar
  24. Clark I, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis Publishers, New York, pp 328Google Scholar
  25. Clement JC, Holmes RM, Peterson BJ, Pinay G (2003) Isotopic investigation of denitrification in a riparian ecosystem in western France. J Appl Ecol 40:1035–1048CrossRefGoogle Scholar
  26. De Luca DA, Lasagna M, di Popolo M, Ticineto A (2007) Installation of a vertical slurry wall around an Italian quarry lake: complications arising and simulation of the effects on groundwater flow. Environ Geol 53:177–189. doi: 10.1007/s00254-006-0632-3 CrossRefGoogle Scholar
  27. De Luca DA, Destefanis E, Forno MG, Lasagna M, Masciocco L (2014) The genesis and the hydrogeological features of the Turin Po Plain fontanili, typical lowland springs in Northern Italy. Bull Eng Geol Environ 73:409–427. doi: 10.1007/s10064-013-0527-y Google Scholar
  28. Debernardi L, De Luca DA, Lasagna M (2008) Correlation between nitrate concentration in groundwater and parameter affecting aquifer intrinsic vulnerability. Env Geol 55:539–558. doi: 10.1007/s00254-007-1006-1 CrossRefGoogle Scholar
  29. Debernardi L, De Luca DA, Lasagna M (2009) Proposta di una metodologia per la valutazione della vulnerabilità specifica di un acquifero ai nitrati in funzione delle caratteristiche idrodinamiche (A specific vulnerability assessment method for nitrate Contamination). Rendiconti Online Società Geologica Italiana 6:205–206Google Scholar
  30. EC (1998) Council directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. Off J Eur Commun L 330(1998):32Google Scholar
  31. El Gaouzi F-ZJ, Sebilo M, Ribstein P, Plagnes V, Boeckx P, Xue D, Derenne S, Zakeossian M (2013) Using d15N and d18O values to identify sources of nitrate in karstic springs in the Paris basin (France). Appl Geochem 35:230–243CrossRefGoogle Scholar
  32. Evans TA, Maidment DR (1995) A spatial and statistical assessment of the vulnerability of Texas groundwater to nitrate contamination. CRWR online report 95-4. http://www.crwr.utexas.edu/gis/gishydro00/library/evans/rep95_4.htm
  33. Decreto Legislativo 2 febbraio 2001, n. 31. Attuazione della direttiva 98/83/CE relativa alla qualita` delle acque destinate al consumo umano. Gazz. Uff. 3 marzo 2001, n. 52—Supplemento Ordinario n. 41Google Scholar
  34. Foster SSD, Hirata R (1988) Groundwater pollution risk assessment. Pan American Centre for Sanitary Engineering and Environmental Sciences, LimaGoogle Scholar
  35. Foster S, Hirata R, Gomes D, D’Elia M, Paris M (2002) Groundwater quality protection: a guide for water utilities, municipal authorities and environment agencies. World Bank Publication, Washington, p 103CrossRefGoogle Scholar
  36. Gao H, Schreiber F, Collins G, Jensen MM, Kostka JE, Lavik G, de Beer D, Zhou HY, Kuypers MMM (2010) Aerobic denitrification in permeable Wadden Sea sediments. ISME J 4:417–426CrossRefGoogle Scholar
  37. Gemitzi A, Petalas C, Tsihrintzis VA, Pisinaras V (2006) Assessment of groundwater vulnerability to pollution: a combination of GIS, fuzzy logic and decision making techniques. Environ Geol 49(5):653–673CrossRefGoogle Scholar
  38. General Accounting Office (GAO) (1992) Groundwater protection: validity and feasibility of EPA’s differential protection strategy. (GAO/PEMD-93-6). General Accounting Office, WashingtonGoogle Scholar
  39. Gillham RW, Cherry JA (1978) Field evidence of denitrification in shallow groundwater flow systems. Water Pollut Res Can 13(1):53–71Google Scholar
  40. Grignani C, Sacco D (2005) Elaborazione dati e modellistica per l’individuazione delle zone vulnerabili da nitrati e da fitofarmaci e per la definizione e attuazione dei programmi d’azione. Relazione finale. Dipartimento di Agronomia, Selvicoltura e Gestione del Territorio—Universita` degli Studi di Torino (unpublished data)Google Scholar
  41. Güler C, Kurt M, Korkut RN (2013) Assessment of groundwater vulnerability to nonpoint source pollution in a Mediterranean coastal zone (Mersin, Turkey) under conflicting land use practices. Ocean Coast Manag 71:141–152CrossRefGoogle Scholar
  42. Haycock NE, Pinay G, Walker C (1993) Nitrogen retention in river corridors: European perspectives. Ambio 22:340–346Google Scholar
  43. Hegesh E, Shiloah J (1982) Blood nitrates and infantile methemoglobinemia. Clin Chim Acta 125:107–115CrossRefGoogle Scholar
  44. Hill AR (1996) Nitrate removal in stream riparian zones. J Environ Qual 22:743–755CrossRefGoogle Scholar
  45. Hill AR, Labadia CF, Sanmugadas K (1998) Hyporheic zone hydrology and nitrogen dynamics in relation to the streambed topography of a N-rich stream. Biogeochemistry 42:285–310CrossRefGoogle Scholar
  46. Hinkle SR, Duff JH, Triska FJ, Laenen A, Gates EB, Bencala KE, Wentz DA, Silva SR (2001) Linking hyporheic flow and nitrogen cycling near the Willametter River—A large river in Oregon, USA. J Hydrol 244:157–180CrossRefGoogle Scholar
  47. Javadi S, Kavehkar N, Mohammadi K, Khodadadi A, Kahawita R (2011) Calibrating DRASTIC using field measurements, sensitivity analysis and statistical methods to assess groundwater vulnerability. Water Int 36(6):719–732CrossRefGoogle Scholar
  48. Jones JB Jr, Holmes RM (1996) Surface-subsurface interactions in stream ecosystems. Trends Ecol Evol 11:239–242CrossRefGoogle Scholar
  49. Kayabalı K, Çelik M, Karatosun H, Arıgün Z, Koçbay A (1999) The influence of a heavily polluted urban river on the adjacent aquifer systems. Environ Geol 38:233–243CrossRefGoogle Scholar
  50. Kendall C (1998) Tracing nitrogen sources and cycling in catchment. In: Kendall C, McDonnell JJ (eds) Isotope tracers in catchment hydrology. Elsevier, Amsterdam, pp 519–576CrossRefGoogle Scholar
  51. Korom SF (1992) Natural denitrification in the saturated zone: a review. Water Resour Res 28:1657–1668CrossRefGoogle Scholar
  52. Lasagna M (2006) I nitrati nelle acque sotterranee della pianura piemontese: distribuzione, origine, attenuazione e condizionamenti idrogeologici “Nitrate in Piemonte plain groundwater: distribution, origin, attenuation and hydrogeological conditioning. PhD Thesis, University of Torino, ItalyGoogle Scholar
  53. Lasagna M, Caviglia C (2014) De Luca DA (2014) Simulation modeling for groundwater safety in an overexploitation situation: the Maggiore Valley context (Piedmont, Italy). Bull Eng Geol Environ 73:341–355. doi: 10.1007/s10064-013-0500-9 Google Scholar
  54. Lasagna M, De Luca DA, Debernardi L, Clemente P (2009a) La portata unitaria nella valutazione della capacità di attenuazione per diluizione di un acquifero (Volumetric flow rate per unit perpendicular to the flow direction for the evaluation of aquifer attenuation capacity by means of the dilution process). Rendiconti Online Società Geologica Italiana 6:300–301Google Scholar
  55. Lasagna M, Debernardi L, De Luca DA (2009b) Proposta di una metodologia per la valutazione della vulnerabilità specifica di un acquifero ai nitrati in funzione delle caratteristiche idrodinamiche. EngHydroEnv Geol 2009(12):79–93. doi: 10.1474/EHEGeology.-12.0-06.0265 Google Scholar
  56. Lasagna M, De Luca DA, Debernardi L, Clemente P (2013) Effect of the dilution process on the attenuation of contaminants in aquifers. Environ Earth Sci 70:2767–2784. doi: 10.1007/s12665-013-2336-9 CrossRefGoogle Scholar
  57. Lasagna M, Franchino E, De Luca DA (2015) Areal and vertical distribution of nitrate concentration in Piedmont plain aquifers (North-western Italy). In: Lollino G et al (eds) Engineering geology for society and territory, vol 3, River Basins, reservoir sedimentation and water resources. Springer International Publishing, Switzerland, pp 389–392. doi: 10.1007/978-3-319-09054-2_81
  58. Lasagna M, De Luca DA, Franchino E (2016) Nitrate contamination of groundwater in the western Po Plain (Italy): the effects of groundwater and surface water interactions. Environ Earth Sci 75(3):1–16. doi: 10.1007/s12665-015-5039-6 CrossRefGoogle Scholar
  59. Li J, Lu W, Zeng X, Yuan J, Yu F (2010) Analysis of spatial–temporal distributions of nitrate-N concentration in Shitoukoumen catchment in northeast China. Environ Monit Assess 169:335–345CrossRefGoogle Scholar
  60. Li SL, Liu CQ, Li J, Xue Z, Guan J, Lang Y, Ding H, Li L (2013) Evaluation of nitrate source in surface water of southwestern China based on stable isotopes. Environ Earth Sci 68:219–228CrossRefGoogle Scholar
  61. Liao L, Green CT, Bekins BA, Böhlke JK (2012) Factors controlling nitrate fluxes in groundwater in agricultural areas. Water Resour Res 48:W00L09CrossRefGoogle Scholar
  62. Lindström R, Scharp C (1995) Approaches to groundwater vulnerability assessments: a state of the art report. Div. of Land and Water Resources, Royal Institute of Technology, StockholmGoogle Scholar
  63. Lowrance R, Todd R, Fail J, Hendrickson OJ, Leonard R, Asmussen L (1984) Riparian forests as nutrient filters in agricultural watersheds. Bioscience 34:374–377CrossRefGoogle Scholar
  64. Manassaram DM, Backer LC, Messing R, Fleming LE, Luke B, Monteilh CP (2010) Nitrates in drinking water and methemoglobin levels in pregnancy: a longitudinal study. Environ Health 9:60CrossRefGoogle Scholar
  65. Mariotti A, Germon JC, Hubert P, Kaiser P, Letolle R, Tardieux A, Tardieux P (1981) Experimental determination of nitrogen kinetic isotope fractionation: some principles; illustration for the denitrification and nitrification processes. Plant Soil 62:423–430CrossRefGoogle Scholar
  66. McMahon PB, Böhlke JK (1996) Denitrification and mixing in a stream aquifer system: effects on nitrate loading to surface water. J Hydrol 186:105–128CrossRefGoogle Scholar
  67. Neukum C, Hötzl H (2007) Standardization of vulnerability maps. Environ Geol 51(5):689–694CrossRefGoogle Scholar
  68. Nightingale H, Bianchi W (1980) Correlation of selected well water quality parameters with soil and aquifer hydrologic properties. Water Resour Bull 16(4):702–709CrossRefGoogle Scholar
  69. Nobre RCM, Rotunno Filho OC, Mansur WJ, Nobre MMM, Cosenza CAN (2007) Groundwater vulnerability and risk mapping using GIS, modeling and a fuzzy logic tool. J Contam Hydrol 94(3):277–292CrossRefGoogle Scholar
  70. Nolan BT, Ruddy BC, Hitt KJ, Helsel DR (1998) A national look at nitrate contamination of ground water. Water Cond Purif 39:76–79Google Scholar
  71. Pacheco FA, Fernandes LFS (2013) The multivariate statistical structure of DRASTIC model. J Hydrol 476:442–459CrossRefGoogle Scholar
  72. Panagopoulos GP, Antonakos AK, Lambrakis NJ (2006) Optimization of the DRASTIC method for groundwater vulnerability assessment via the use of simple statistical methods and GIS. Hydrogeol J 14(6):894–911CrossRefGoogle Scholar
  73. Panno SV, Hackley KC, Hwang HH, Kelly WR (2001) Determination of the sources of nitrate contamination in karts springs using isotopic and chemical indicators. Chem Geol 179:113–128CrossRefGoogle Scholar
  74. Postma D, Boesen C, Kristiansen H, Larsen F (1991) Nitrate reduction in an unconfined aquifer: water chemistry, reduction processes, and geochemical modeling. Water Resour Res 27:2027–2045CrossRefGoogle Scholar
  75. Pratt PF, Lund LJ, Rible JM (1978) An approach to measuring leaching of nitrate from freely drained irrigated field. In: Nielson DR, MacDonald JG (eds) Nitrogen in the environmental, vol 1, Academic Press, London, New York, pp 22–256Google Scholar
  76. Pretty JL, Hildrew AG, Trimmer M (2006) Nutrient dynamics in relation to surface–subsurface hydrological exchange in a groundwater fed chalk stream. J Hydrol 330(1–2):84–100CrossRefGoogle Scholar
  77. Puckett LJ (2004) Hydrogeologic controls on the transport and fate of nitrate in ground water beneath riparian buffer zones: results from thirteen studies across the United States. Water Sci Technol 49(3):47–53Google Scholar
  78. Puckett LJ, Zamora C, Essaid H, Wilson JT, Johnson HM, Brayton MJ, Vogel JR (2008) Transport and fate of nitrate at the ground-water/surface-water interface. J Environ Qual 37:1034–1050CrossRefGoogle Scholar
  79. Rao AMF, Mccarthy MJ, Gardner WS, Jahnke RA (2008) Respiration and denitrification in permeable continental shelf deposits on the South Atlantic Bight: N2: Ar and isotope pairing measurements in sediment column experiments. Cont Shelf Res 28:602–613CrossRefGoogle Scholar
  80. Refsgaard JC, Thorsen M, Jensen JB, Kleeschulte S, Hansen S (1999) Large scale modelling of groundwater contamination from nitrate leaching. J Hydrol 221:117–140CrossRefGoogle Scholar
  81. Rivett MO, Buss SR, Morgan P, Smith JWN, Bemment CD (2008) Nitrate attenuation in groundwater: a review of biogeochemical controlling processes. Water Res 42:4215–4232CrossRefGoogle Scholar
  82. Sabater S, Butturini A, Clement J, Burt T, Dowrick D, Hefting M, Maıˆtre V, Pinay G, Postolache G, Rzepecki M, Sabater F (2003) Nitrogen removal by riparian buffers along a European climatic gradient: patterns and factors of variation. Ecosystems 6:20–30CrossRefGoogle Scholar
  83. Sacco D, Zavattaro L, Grignani C (2006) Regional-scale predictions of agricultural n losses in an area with a high livestock density. Ital J Agron 4:689–703CrossRefGoogle Scholar
  84. Sánchez-Pérez JM, Bouey C, Sauvage S, Teissier S, Antiguedad I, Vervier P (2003) A standardised method for measuring in situ denitrification in shallow aquifers: numerical validation and measurements in riparian wetlands. Hydrol Earth Syst Sc 7(1):87–96CrossRefGoogle Scholar
  85. Seitzinger S, Harrison JA, Jk Bohlke, Bouwman AF, Lowrance R, Peterson B, Tobias C, Van Drecht G (2006) Denitrification across landscapes and waterscapes: a synthesis. Ecol Appl 16(6):2064–2090CrossRefGoogle Scholar
  86. Starr RC, Gillham RW (1993) Denitrification and organic carbon availability in two aquifers. Ground Water 31(6):934–947CrossRefGoogle Scholar
  87. Stigter TY, Ribeiro L, Carvalho Dill AMM (2006) Evaluation of an intrinsic and a specific vulnerability assessment method in comparison with groundwater salinisation and nitrate contamination levels in two agricultural regions in the south of Portugal. Hydrogeol J 14:79–99CrossRefGoogle Scholar
  88. Strebel O, Duynisveld WHM, Bottcher J (1989) Nitrate pollution of groundwater in western Europe. Agric Ecosyst Environ 26:189–214CrossRefGoogle Scholar
  89. Thomasson AJ, Bouma J, Leith H (eds) (1991) Soil and groundwater research report. II. Nitrate in soils. EUR13501 Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  90. Thorburn PJ, Biggs JS, Weier KL, Keating BA (2003) Nitrate in groundwaters of intensive agricultural areas in coastal Northeastern Australia. Agr Ecosyst Environ 94:49–58CrossRefGoogle Scholar
  91. Tiedje JM, Sextone AJ, Myrold DD, Robinson JA (1982) Denitrification: ecological niches, competition and survival. Antoine van Leeuwenhoek 48:569–583CrossRefGoogle Scholar
  92. Toda H, Mochizuki Y, Kawanishi T, Kawashima H (2002) Denitrification in shallow groundwater in a coastal agricultural area in Japan. Nutr Cycl Agroecosyst 63:167–173CrossRefGoogle Scholar
  93. Todd DK (1980) Groundwater hydrology. Wiley, New YorkGoogle Scholar
  94. Uhan J, Vižintin G, Pezdič J (2011) Groundwater nitrate vulnerability assessment in alluvial aquifer using process-based models and weights-of-evidence method: lower Savinja Valley case study (Slovenia). Environ Earth Sci 64(1):97–105CrossRefGoogle Scholar
  95. US EPA (2000) Drinking water standards and health advisories. US Environmental Protection Agency, Office of Water. EPA-822-B- 00-001Google Scholar
  96. Vidon P, Hill AR (2004) Denitrification and patterns of electron donors and acceptors in eight riparian zones with contrasting hydrogeology. Biogeochemistry 71:259–283CrossRefGoogle Scholar
  97. Wassenaar LI, Hendry MJ, Harrington N (2006) Decadal geochemical and isotopic trends for nitrate in a transboundary aquifer and implications for agricultural beneficial management practices. Environ Sci Technol 40:4626CrossRefGoogle Scholar
  98. Winter TC, Harvey JW, Franke OL, Alley WM (1998) Ground water and surface water—a single resource. US Geological Survey Circular 1139. US Government Printing OfficeGoogle Scholar
  99. Yu C, Yao Y, Hayes G, Zhang B, Zheng C (2010) Quantitative assessment of groundwater vulnerability using index system and transport simulation, Huangshuihe catchment, China. Sci Total Environ 408(24):6108–6116CrossRefGoogle Scholar
  100. Zampetti M (1983) Informazioni e dati relativi alla quantità ed alla qualità delle acque sotterranee nella Comunità Europea. In: Proceedings of the international conference inquinamento delle Acque sotterranee da Composti organo-clorurati di Origine industriale, Milano, pp 197–204Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Manuela Lasagna
    • 1
    Email author
  • Domenico Antonio De Luca
    • 1
  • Elisa Franchino
    • 1
  1. 1.University of TurinTurinItaly

Personalised recommendations