Advertisement

Hillslope runoff generation influenced by layered subsurface in a headwater catchment in Ore Mountains, Germany

  • Katja Heller
  • Arno Kleber
Thematic Issue
Part of the following topical collections:
  1. Water in Germany

Abstract

The Ore Mountains were one of the important flood source areas for several heavy floods over the last years. Reducing damages caused by floods demands sufficient information on the runoff generation processes in the catchments. The aim of this study is to provide insights into prevailing flow pathways, retention times and threshold behavior of a representative hillslope catchment with layered subsurface in the Ore Mountains. The study site is a forested headwater with gneiss as bedrock. We used hydrometrical methods, soil temperature data and sprinkler experiments. Results indicate that the hydraulic anisotropic structure of the deepest layer in 0.9–1.7 m depth is the major controlling factor for subsurface water flow paths. On one hand, this layer acts as an aquitard for seeping water because of its high bulk density. On the other hand, water within the layer is able to flow laterally because of the sandy texture and coarse clasts oriented parallel to the slope. Moreover, three pre-moisture controlled types of runoff processes were addressed. With low antecedent soil moisture, saturation overland flow dominates in the spring bog. With intermediate or high pre-moisture, interflow is generated. The measured runoff coefficients increase in a nonlinear manner with rising pre-moisture. A soil water tension threshold value near field capacity is the tipping point for nonlinear runoff response. These findings emphasize the impact of the layered structure of the subsurface and of antecedent soil moisture for runoff generation in low mountain ranges and may be useful for establishing flood warning systems.

Keywords

Hillslope hydrology Interflow Antecedent soil moisture Soil suction monitoring Sprinkler experiment Low mountain range 

Notes

Acknowledgments

The financial means for measurement instrumentation, as well as installation and operation of the measuring field, were funded by the Institute of Geography, Technical University of Dresden. Furthermore, we thank the forest district Marienberg for the permission to install the measurement equipment in the headwater under study.

References

  1. AGB (Arbeitsgruppe Boden) (2005) Bodenkundliche Kartieranleitung, 5th edn. Schweizerbart, HannoverGoogle Scholar
  2. Alaoui A, Caduff U, Gerke HH, Weingartner R (2011) Preferential flow effects on infiltration and runoff in grassland and forest soils. Vadose Zone 10:367–377. doi: 10.2136/vzj2010.0076 CrossRefGoogle Scholar
  3. Ali G, Tetzlaff D, McDonnell JJ, Soulsby C, Carey S, Laudon H, McGuire K, Buttle J, Seibert J, Shanley J (2015) Comparison of threshold hydrologic response across northern catchments. Hydrol Process 29:3575–3591. doi: 10.1002/hyp.10527 CrossRefGoogle Scholar
  4. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration—guidelines for computing crop water requirements. FAO Irrigation and drainage paper 56. FAO, RomeGoogle Scholar
  5. Amoozegar A (1989) A compact constant-head permeameter for measuring saturated hydraulic conductivity of the vadose zone. Soil Sci Soc Am J 53(5):1356–1361CrossRefGoogle Scholar
  6. Anderson MG, Burt TP (1990) Subsurface runoff. In: Anderson MG, Burt TP (eds) Process studies in hillslope hydrology. Wiley, Chichester, pp 365–400Google Scholar
  7. Anderson AE, Weiler M, Alila Y, Hudson RO (2009) Subsurface flow velocities in a hillslope with lateral preferential flow. Water Resour Res 45:W11407. doi: 10.1029/2008WR007121 Google Scholar
  8. Badoux A, Witzig J, Germann PF, Kienholz H, Lüscher P, Weingartner R, Hegg C (2006) Investigations on the runoff generation at the profile and plot scales, Swiss Emmental. Hydrol Process 20:377–394CrossRefGoogle Scholar
  9. Beven KJ (2012) Rainfall-runoff modelling—the primer. Wiley, ChichesterCrossRefGoogle Scholar
  10. Beven K, Germann P (2013) Macropores and water flow in soils revisited. Water Resour Res 49:3071–3092. doi: 10.1002/wrcr.20156 CrossRefGoogle Scholar
  11. Bronstert A, Creutzfeldt B, Graeff T, Hajnsek I, Heistermann M, Itzerott S, Jagdhuber T, Kneis D, Lück E, Reusser D, Zehe E (2012) Potentials and constraints of different types of soil moisture observations for flood simulations in headwater catchments. Nat Hazards 60:879–914CrossRefGoogle Scholar
  12. Casper M (2002) Die Identifikation hydrogeologischer Prozesse im Einzugsgebiet des Dürreychbaches (Nordschwarzwald). Mitteilungen des Instituts für Wasserwirtschaft und Kulturtechnik der Universität Karlsruhe 210. http://digbib.ubka.uni-karlsruhe.de/volltexte/1772002. Accessed 10 June 2013
  13. Central Geological Institute (1984) Hydrogeological map of German Democratic Republic, Hydrogeological basis map 1:50.000, Zschopau/Sayda 1308-3/4, BerlinGoogle Scholar
  14. Chifflard P (2006) Der Einfluss des Reliefs, der Hangsedimente und der Bodenvorfeuchte auf die Abflussbildung im Mittelgebirge—Experimentelle Prozess-Studien im Sauerland. Bochumer geographische Arbeiten 76. http://publik.tuwien.ac.at/files/PubDat_148040.pdf. Accessed 28 Sept 2011
  15. Chifflard P, Didszun J, Zepp H (2008) Skalenübergreifende Prozess-Studien zur Abflussbildung in Gebieten mit periglazialen Deckschichten (Sauerland, Deutschland). Grundwasser 13:27–41CrossRefGoogle Scholar
  16. Color Munsell (1994) Munsell soil color charts. Gretag Macbeth, New WindsorGoogle Scholar
  17. Detty JM, McGuire KJ (2010) Threshold changes in storm runoff generation at a till-mantled headwater catchment. Water Resour Res 46:W07525. doi: 10.1029/2009WR008102 CrossRefGoogle Scholar
  18. Didszun J (2004) Experimentelle Untersuchungen zur Skalenabhängigkeit der Abflussbildung. Freiburger Schriften zur Hydrologie 19. http://www.hydrology.uni-freiburg.de/publika/FSH-BD19-Didszun.pdf. Accessed 10 May 2011
  19. DIN ISO 11277 (2009) Soil quality—determination of particle size distribution in mineral soil material—method by sieving and sedimentation. International Organization for Standardization, GenevaGoogle Scholar
  20. Elrick DE, Reynolds WD (1992) Methods for analyzing constant-head permeameter data. Soil Sci Soc Am J 56:320–323CrossRefGoogle Scholar
  21. European Environment Agency (2001) Sustainable water use in Europe Part 3: extreme hydrological events: floods and droughts. Environmental Issue Report 21Google Scholar
  22. Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (2003) Hydrological atlas of Germany. Federal Ministry for the Environment, Nature Conservation and Nuclear Safety, BerlinGoogle Scholar
  23. Fue C, Chen J, Jiang H, Dong L (2013) Threshold behavior in a fissured granitic catchment in southern China: 1. Analysis of field monitoring results. Water Resour Res 49:2519–2535CrossRefGoogle Scholar
  24. Fujimoto M, Othe N, Tani M (2011) Effects of hillslope topography on runoff response in a small catchment in the Fudoji Experimental Watershed, Central Japan. Hydrol Process 25:1874–1886CrossRefGoogle Scholar
  25. Gleeson T, Manning AH (2008) Regional groundwater flow in mountainous terrain: three-dimensional simulations of topographic and hydrogeologic controls. Water Resour Res 44:W10403. doi: 10.1029/2008WR006848 CrossRefGoogle Scholar
  26. Graham C, McDonnell JJ, Woods R (2010a) Hillslope threshold response to storm rainfall: (1) A field based forensic approach. J Hydrol 393:65–76. doi: 10.1016/j.jhydrol.2009.12.015 CrossRefGoogle Scholar
  27. Graham CB, van Verseveld W, Barnard HR, McDonnell JJ (2010b) Estimating the deep seepage component of the hillslope and catchment water balance within a measurement uncertainty framework. Hydrol Process 24:3631–3647CrossRefGoogle Scholar
  28. Heller K (2012) Einfluss periglazialer Deckschichten auf die oberflächennahen Fließwege am Hang-eine Prozessstudie im Osterzgebirge, Sachsen. Dissertation, Technical University of Dresden. http://www.qucosa.de/fileadmin/data/qucosa/documents/9843/Dissertation_Heller_2012.pdf. Accessed 1 Feb 2013
  29. Hendriks MR (2010) Introduction to physical hydrology. Oxford University Press, New YorkGoogle Scholar
  30. Hillel D (2004) Introduction to environmental soil physics. Elsevier Academic Press, AmsterdamGoogle Scholar
  31. Hölting B, Coldewey WG (2013) Hydrogeologie. Springer, BerlinCrossRefGoogle Scholar
  32. Horlacher HB, Heyer T, Carstensen D, Bielagk U, Bielitz E, Müller U (2007) Analysis of dyke breaks during the 2002 flood in Saxony/Germany. FWU Water Resour Publ 6:58–66. http://www.uni-siegen.de/zew/publikationen/volume0607/heyer.pdf. Accessed 25 July 2014
  33. Hrachowitz M, Savenije HHG, Blöschl G, McDonnell JJ, Sivapalan M, Pomeroy JW, Arheimer B, Blume T, Clark MP, Ehret U, Fenicia F, Freer JE, Gelfan A, Gupta HV, Hughes DA, Hut RW, Montanari A, Pande S, Tetzlaff D, Troch PA, Uhlenbrook S, Wagener T, Winsemius HC, Woods RA, Zehe E, Cudennec C (2013) A decade of Predictions in Ungauged Basins (PUB)—a review. Hydrol Sci J 58(6):1198–1255. doi: 10.1080/02626667.2013.803183 CrossRefGoogle Scholar
  34. Hübner R, Heller K, Günther T, Kleber A (2015) Monitoring hillslope moisture dynamics with surface ERT for enhancing spatial significance of hydrometric point measurements. Hydrol Earth Syst Sci 19:225–240. doi: 10.5194/hess-19-225-2015 CrossRefGoogle Scholar
  35. Hümann M, Schüler G, Müller C, Schneider R, Johst M, Caspari T (2011) Identification of runoff processes—the impact of different forest types and soil properties on runoff formation and floods. J Hydrol 409:637–649CrossRefGoogle Scholar
  36. Johst M (2011) Experimentelle und modellgestützte Untersuchungen zur Hochwasserentstehung im Nordpfälzer Bergland unter Verwendung eines neuartigen Spatial-TDR-Bodenfeuchtemessgeräts. Dissertation, University of Trier. http://ubt.opus.hbz-nrw.de/volltexte/2011/651/. Accessed 14 June 2013
  37. Jordan H, Weder JH (1995) Hydrogeologie: Grundlagen und Methoden; Regionale Hydrogeologie: Mecklenburg-Vorpommern, Brandenburg und Berlin, Sachsen-Anhalt, Sachsen, Thüringen. Enke, StuttgartGoogle Scholar
  38. Kim HJ, Sidle RC, Moore RD, Hudson R (2004) Throughflow variability during snowmelt in a forested mountain catchment, coastal British Columbia, Canada. Hydrol Process 18:1219–1236CrossRefGoogle Scholar
  39. Kim HJ, Sidle RC, Moore RD (2005) Shallow lateral flow from a forested hillslope: influence of antecedent wetness. Catena 60:293–306CrossRefGoogle Scholar
  40. Kirby MJ (1985) Hillslope hydrology. In: Anderson MG, Burt TP (eds) Hydrological forecasting. Wiley, Chichester, pp 37–75Google Scholar
  41. Kleber A (1997) Cover-beds as soil parent materials in mid-latitude regions. Catena 30:197–213CrossRefGoogle Scholar
  42. Kleber A (2000) Compound soil horizons with mixed calcic and argillic properties—examples from the northern Great Basin, USA. Catena 41:111–131CrossRefGoogle Scholar
  43. Kleber A, Gusev VV (1998) Soil parent materials in the Moshaysk-district, Russia. Catena 34:61–74CrossRefGoogle Scholar
  44. Kleber A, Schellenberger A (1998) Slope hydrology triggered by cover-beds. With an example from the Frankenwald Mountains, northeastern Bavaria. Z Geomorphol NF 42:469–482Google Scholar
  45. Kleber A, Leopold M, Vonlanthen C, Völkel J (2013a) Transferring the concept of cover beds. In: Kleber A, Terhorst B (eds) Mid-latitude slope deposits (cover beds). Developments in Sedimentology 66. Elsevier, Amsterdam, pp 171–228CrossRefGoogle Scholar
  46. Kleber A, Terhorst B, Bullmann H, Hülle D, Leopold M, Müller S, Raab T, Sauer D, Scholten T, Dietze M, Felix-Henningsen P, Heinrich J, Spies ED, Thiemeyer H (2013b) Subdued mountains of Central Europe. In: Kleber A, Terhorst B (eds) Mid-latitude slope deposits (cover beds). Developments in Sedimentology 66. Elsevier, Amsterdam, pp 9–81CrossRefGoogle Scholar
  47. Koo MH, Kim Y (2008) Modelling of water flow and heat transport in the vadose zone: numerical demonstration of variability of local groundwater recharge in response to monsoon rainfall in Korea. Geosci J 12(2):123–137CrossRefGoogle Scholar
  48. Lorz C, Heller K, Kleber A (2011) Stratification of the regolith continuum—a key property for processes and functions of landscapes. Zeitschrift für Geomorphologie 55(3):277–292CrossRefGoogle Scholar
  49. Marchi L, Borga M, Preciso E, Gaume E (2010) Characterisation of selected extreme flash floods in Europe and implications for flood risk management. J Hydrol 394:118–133CrossRefGoogle Scholar
  50. McDonnell JJ (2003) Where does water go when it rains? Moving beyond the variable source area concept of rainfall-runoff response. Hydrol Process 17:1869–1875CrossRefGoogle Scholar
  51. McDonnell JJ, Sivapalan M, Vaché K, Dunn S, Grant G, Haggerty R, Hinz C, Hooper R, Kirchner J, Roderick ML, Selker J, Weiler M (2007) Moving beyond heterogeneity and process complexity: a new vision for watershed hydrology. Water Resour Res 43:W07301. doi: 10.1029/2006WR005467 CrossRefGoogle Scholar
  52. McGlynn BL, McDonnell JJ, Seibert J, Kendall C (2004) Scale effects on headwater catchment runoff timing, flow sources, and groundwater-streamflow relations. Water Resour Res 40:W07504. doi: 10.1029/2003WR002494 CrossRefGoogle Scholar
  53. Mehlhorn J (1998) Tracerhydrologische Ansätze in der Niederschlags-Abfluss-Modellierung. Freiburger Schriften zur Hydrologie 8. http://www.hydrology.uni-freiburg.de/publika/FSH-Bd08-Mehlhorn.pdf. Accessed 12 April 2014
  54. Moldenhauer KM, Heller K, Chifflard P, Hübner R, Kleber A (2013) Influence of cover beds on slope hydrology. In: Kleber A, Terhorst B (eds) Mid-latidute slope deposits (cover beds). Developments in Sedimentology 66. Elsevier, Amsterdam, pp 127–152CrossRefGoogle Scholar
  55. NOAA (2010) Flash flood early warning system reference guide. University Corporation for Atmosphere Research. http://www.meted.ucar.edu/communities/hazwarnsys/ffewsrg/FF_EWS.pdf. Accessed 1 Dec 2015
  56. Noguchi S, Tsuboyama Y, Sidle RC, Hosoda I (2001) Subsurface runoff characteristics from a forest hillslope soil profile including macropores, Hitachi Ohta, Japan. Hydrol Process 15:2131–2149CrossRefGoogle Scholar
  57. Nordmann B, Gottlein A, Binder F (2009) Influence of different tree species on runoff formation—an example of a catchment in the low-mountain range Franconian Forest, Germany. Hydrol Wasserbewirtsch 53(2):80–95Google Scholar
  58. O’Brian RJ, Misstear BD, Gill LW, Deakin JL, Flynn R (2013) Developing an integrated hydrograph separation and lumped modeling approach to quantifying hydrological pathways in Irish river catchments. J Hydrol 486:259–270CrossRefGoogle Scholar
  59. Ollier C, Pain C (1996) Regolith, soils and landforms. Wiley, ChichesterGoogle Scholar
  60. Paton TR, Humphreys GS, Mitchell PB (1995) Soils—a new global view. UCL-Press, LondonGoogle Scholar
  61. Phillips JD (2001) Inherited vs. acquired complexity in east Texas weathering profiles. Geomorphology 40:1–14CrossRefGoogle Scholar
  62. Phillips JD, Lorz C (2008) Origins and implications of soil layering. Earth Sci Rev 89:144–155CrossRefGoogle Scholar
  63. Raab T, Leopold M, Völkel J (2007) Character, age and ecological significance of pleistocene periglacial slope deposits in Germany. Phys Geogr 28(6):451–473CrossRefGoogle Scholar
  64. Sanda M, Cislerova M (2009) Transforming hydrographs in the hillslope subsurface. J Hydrol Hydromech 57:264–275. doi: 10.2478/v10098-009-0023-z CrossRefGoogle Scholar
  65. Sanda M, Vitvar T, Kulasova A, Jankovec J, Cislerova M (2014) Run-off formation in a humid, temperate headwater catchment using combined hydrological, hydrochemical and isotopic approach (Jizera Mountains, Czech Republic). Hydrol Process 28:3217–3229. doi: 10.1002/hyp.9847 CrossRefGoogle Scholar
  66. Sauer TJ, Logsdon SD (2002) Hydraulic and physical properties of stony soils in a small watershed. Soil Sci Soc Am 66:1947–1956CrossRefGoogle Scholar
  67. Schneider R, Schobel S, Niebes D, Schröder D (2001) Untersuchungen zur Hochwasserentstehung im Labor und Gelände auf unterschiedlichen Skalenniveaus. Mitt Dtsch Bodenkd Ges 96(2):653–654Google Scholar
  68. Schneider P, Pool S, Strouhal L, Seibert J (2014) True colors—experimental identification of hydrological processes at a hillslope prone to slide. Hydrol Earth Syst Sci 18:875–892. doi: 10.5194/hess-18-875-2014 CrossRefGoogle Scholar
  69. Schobel S (2008) Infiltrations-und Bodenabflussprozesse in Abhängigkeit von Landnutzung und Substrat in der Trier-Bitburger Mulde. Dissertation, University of Trier. http://ubt.opus.hbz-nrw.de/volltexte/2008/493/pdf/SchobelSteffen_20080917.pdf Accessed 3 Dec 2011
  70. Scholten T, Altermann M, Schwanecke W, Felix-Henningsen P (1999) Die Bedeutung periglazialer Lagen für Funktionen des Bodens im Ostharz. Mitt Dtsch Bodenkd Ges 91(2):1096–1099Google Scholar
  71. Schröter K, Mühr B, Elmer F, Kunz-Plapp T, Trieselmann W (2013) June 2013 Flood in Central Europe—Focus Germany, Report 1—Update 2: preconditions, meteorology, hydrology. Center for Disaster Management and Risk Reduction Technology. https://www.cedim.de/download/FDA_Juni_Hochwasser_Bericht1-ENG.pdf. Accessed 2 Oct 2014
  72. Schwarze R, Beudert B (2009) Analyse der Hochwassergenese und des Wasserhaushalts eines bewaldeten Einzugsgebietes unter dem Einfluss eines massiven Borkenkäferbefalls. Hydrol Wasserbewirtsch 53(4):236–249Google Scholar
  73. Seeger T (1990) Abfluß-und Stofffrachtseparation im Buntsandstein des Nordschwarzwaldes. Tübinger Geowissenschaftliche Arbeiten 6(C), pp 49–54Google Scholar
  74. Sir M, Tesar M (2013) Water retention and runoff formation in the Krkonose Mts. Opera Corcon 50:97–106Google Scholar
  75. Sivapalan M, Takeuchi K, Franks SW, Gupta VK, Karambiri H, Lakshmi V, Liang X, McDonnell JJ, Mendiondo EM, O’Connell PE, Oki T, Pomeroy JW, Schertzer D, Uhlenbrook S, Zehe E (2003) IAHS decade on predictions in ungauged basins (PUB), 2003–2012: shaping an exciting future for the hydrological sciences. Hydrol Sci J 48(6):857–880CrossRefGoogle Scholar
  76. Srinivasan MS, Gburek WJ, Hamlett JM (2002) Dynamics of stormflow generation—a hillslope-scale field study in east-central Pennsylvania, USA. Hydrol Process 16:649–665CrossRefGoogle Scholar
  77. Tabaggh A, Bendjoudi H, Benderitter Y (1999) Determination of recharge in unsaturated soils using temperature monitoring. Water Resour Res 35:2439–2446CrossRefGoogle Scholar
  78. Tesar M, Sir M (2013) Early warning system for flash floods in the Krkonose Mts. Opera Corcon 50:107–112Google Scholar
  79. Tesar M, Sir M, Prazak J, Lichner L (2004) Instability driven flow and runoff formation in a small catchment. Geol Acta 2:147–156Google Scholar
  80. Tetzlaff D, Carey SK, Laudon H, McGuire K (2010) Catchment processes and heterogeneity at multiple scales—benchmarking observations, conceptualization and prediction. Hydrol Process 24:2203–2208CrossRefGoogle Scholar
  81. Tetzlaff D, Birkel C, Dick J, Geris J, Soulsby C (2014) Storage dynamics in hydropedological units control hillslope connectivity, runoff generation, and the evolution of catchment transit time distributions. Water Resour Res 50:969–985. doi: 10.1002/2013WR014147 CrossRefGoogle Scholar
  82. Tromp-van Meerfeld HJ, McDonnell JJ (2006) Threshold relations in subsurface stormflow: 2. The fill and spill hypothesis. Water Res Res 42(2):W02411. doi: 10.1029/2004wr003800 Google Scholar
  83. Uhlemann S, Thieken AH, Merz B (2010) A consistent set of trans-basin floods in Germany between 1952–2002. Hydrol Earth Syst Sci 14:1277–1295. doi: 10.5194/hess-14-1277-2010 CrossRefGoogle Scholar
  84. Uhlenbrook S, Didszun J, Wenninger J (2008) Source areas and mixing of runoff components at the hillslope scale—a multi-technical approach. Hydrol Sci J 53(4):741–753CrossRefGoogle Scholar
  85. USDA (1999) Soil Taxonomy. A basic system of soil classification for making and interpreting soil surveys. Agricultural Handbook 436. Soil Survey Stuff, WashingtonGoogle Scholar
  86. Veit H (1993) Upper Quaternary landscape and climate evolution in the Norte Chico (northern Chile): an overview. Mt Res Dev 13:139–144CrossRefGoogle Scholar
  87. Voeckler HM, Allen DM, Alila Y (2014) Modeling coupled surface water–groundwater processes in a small mountainous headwater catchment. J Hydrol 517:1089–1106CrossRefGoogle Scholar
  88. Völkel J, Zepp H, Kleber A (2002) Periglaziale Deckschichten in Mittelgebirgen-ein offenes Forschungsfeld. Ber Dtsch Landeskd 76(2/3):101–114Google Scholar
  89. Von Freyberg J, Radny D, Gall HE, Schirmer M (2014) Implications of hydrologic connectivity between hillslopes and riparian zones on streamflow composition. J Contam Hydrol 169:62–74CrossRefGoogle Scholar
  90. Weiler M, McDonnell JJ (2004) Virtual experiments: a new approach for improving process conceptualization in hillslope hydrology. J Hydrol 285:3–18CrossRefGoogle Scholar
  91. Wenninger J, Uhlenbrook S, Tilch N, Leibundgut C (2004) Experimental evidence of fast groundwater responses in a hillslope/floodplain area in the Black Forest Mountains, Germany. Hydrol Process 18:3305–3322CrossRefGoogle Scholar
  92. Weyman DR (1973) Measurements of the downslope flow of water in a soil. J Hydrol 20:267–288CrossRefGoogle Scholar
  93. Zehe E, Sivapalan M (2009) Threshold behavior in hydrological systems as (human) geo-ecosystems: manifestations, controls, implications. Hydrol Earth Syst Sci 13:1273–1297CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of GeographyDresden University of TechnologyDresdenGermany

Personalised recommendations