Estimating thawing depths and mean annual ground temperatures in the Khuvsgul region of Mongolia

  • Munkhtsetseg ZorigtEmail author
  • Jaap Kwadijk
  • Eelco Van Beek
  • Scott Kenner
Original Article


Permafrost is an important component in the ecosystem and plays a key role in soil regime characteristics in high-altitude regions. Thawing depths and mean annual ground temperatures are the main parameters to conduct research on permafrost. Here we present the results of different modeling approaches for estimating thawing depths and mean annual ground temperatures in the Khuvsgul region of Mongolia. The aim of this study was to analyze the modeling approaches and determine what model best simulates the different characteristics of the soils. Moreover, this study investigates the factors that determine the best fit model approaches for certain conditions of the study area. For this study, the Stefan model was applied to estimate thawing depths and the TTOP and Kudryavtsev model approaches were applied for the estimations of mean annual ground temperatures. The estimations were performed at seven observational boreholes in the region. The evaluations show that model results are more sensitive to thermal and physical properties of the soil than the air temperatures for estimating thawing depths and mean annual ground temperatures.


Permafrost Thawing depth Mean annual ground temperature 


  1. Anarmaa S, Sharkhuu N, Etzelmuller B, Heggem ESF, Nelson FE, Shiklomanov NI, Goulden CE, Brown J (2007) Permafrost monitoring in the Khuvsgul mountain region Mongolia. J Geophys Res 112:F02506. doi: 10.1029/2006JF000543 Google Scholar
  2. Douglas LD (1991) Thermal response of the active layer to climatic warming in a permafrost environment. Cold Reg Sci Technol 19:111–122Google Scholar
  3. Harris Ch et al (2009) Permafrost and climate in Europe: monitoring and modelling thermal, geomorphological and geotechnical responses. Earth Sci Rev 92:117–171Google Scholar
  4. Heggem E, Etzelmuller B, Anarmaa S, Sharkhuu N, Goulden C, Nandinsetseg B (2006) Spatial distribution of ground surface temperatures and active layerGoogle Scholar
  5. Holmes TM (2008) Estimating soil temperature profile from a single depth observation: a simple empirical heatflow solution. Water Resour Res 44:W02412. doi: 10.1029/2007WR005994 CrossRefGoogle Scholar
  6. Janke JR, Williams MW, Evans Jr A (2012) A comparison of permafrost prediction models along a section of Trail Ridge Road, Rocky Mountain National Park, Colorado, USA. Geomorphology 138:111–120. doi: 10.1016/j.geomorph.2011.08.029
  7. Jorgenson MT, Kreig RA (1988) A model for mapping permafrost distribution based on landscape components maps and climatic variables: Proceedings of Fifth international permafrost conference. Tapir Press, Trondheim, Norway, pp 176–182Google Scholar
  8. Marchenko SS, Gorbunov AP, Romanovsky VE (2006) Permafrost warming in the Tien Shan Mountains, Central Asia. Global Planet Change, GLOBAL-01160, 17 ppGoogle Scholar
  9. Nelson FE, Shiklomanov NI, Mueller GR, Hinkel KM, Walker DA, Bockheim JG (1997) Estimating active-layer thickness over a large region: Kuparuk River basin, Alaska, USA. Arct Alp Res 29(4):367–378Google Scholar
  10. Overduin PK (2005) Measuring thermal conductivity in freezing and thawing soil using the soil temperature response to heatingGoogle Scholar
  11. Pang Q, Zhao L, Li S, Ding Y (2011) Active layer thickness variations on the Qinghai-Tibet Plateau under the scenarios of climate change. Environ Earth Sci 66(3):849–857Google Scholar
  12. Riseborough D, Shiklomanov N, Etzelmuller B, Gruber S, Marchenko S (2008) Recent advances in permafrost modelling. Permafr Periglac Process 19:137–156. doi: 10.1002/ppp.615 CrossRefGoogle Scholar
  13. Sazonova TS, Romanovsky VE, Wlash JE, Sergueev DO (2004) Permafrost dynamics in the 20th and 21st centuries along the East Siberian transect. J Geophys ResGoogle Scholar
  14. Schrott L (1998) The hydrological significance of high mountain permafrost and its relation to solar radiation. A case study in the high Andes of San Juan, Argentina. Bamb Geogr Schr 15:71–84Google Scholar
  15. Shiklomanov NF (1999) Analytic representation of the active layer thickness field, Kuparuk River Basin, Alaska. Ecol Model 123:105–125CrossRefGoogle Scholar
  16. Shiklomanov NI, Nelson FE (2003) Climatic variability in the Kuparuk region, North-central Alaska: optimizating spatial and temporal interpolation in a sparse observation network. Arctic 56:136–146CrossRefGoogle Scholar
  17. Smith MD (1996) Permafrost monitoring and detection of climate change. Permafr Periglac Process 7:301–309CrossRefGoogle Scholar
  18. Tumurbaatar D (2004) Seasonally frozen ground and permafrost in Mongolia. Urlakh erdem Press, UlaanbaatarGoogle Scholar
  19. Woo MK, Xia Z (1996) Effects of hydrology on the thermal conditions of the active layer. Nordic Hydrol 27:129–142Google Scholar
  20. Woo MK, Kane DL, Carey SK, Yang D (2008) Progress in permafrost hydrology in the new millennium. Permafr Periglac Process 19:237–254CrossRefGoogle Scholar
  21. Wright JF, Duchesne C, Cote MM (2003) Regional-scale permafrost mapping using the TTOP ground temperature model. PermafrostGoogle Scholar
  22. Zhang TJ (2005) Influence of the seasonal snow cover on the ground thermal regime: an overview. Rev Geophys 43:RG4002. doi: 10.1029/2004RG000157

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Munkhtsetseg Zorigt
    • 1
    • 2
    Email author
  • Jaap Kwadijk
    • 3
  • Eelco Van Beek
    • 2
    • 3
  • Scott Kenner
    • 4
  1. 1.National University of MongoliaUlaanbaatarMongolia
  2. 2.University of TwenteEnschedeThe Netherlands
  3. 3.DeltaresDelftThe Netherlands
  4. 4.South Dakota School of Mines and TechnologyRapid CityUSA

Personalised recommendations