Surface hardness as a proxy for weathering behaviour of limestone heritage: a case study on dated headstones on the Isle of Portland, UK

  • K. WilhelmEmail author
  • H. Viles
  • O. Burke
  • J. Mayaud
Thematic Issue
Part of the following topical collections:
  1. Geomaterials used as construction raw materials and their environmental interactions


This study estimates stone weathering rates using in situ surface hardness testing. Surface hardness changes are precursors to erosion and may be utilized to describe stone weathering behaviour. The method proposed here complements previous approaches to determining stone weathering rates by surface loss/change. A time series covering 1–248 years of exposure is investigated using a sample of 12 headstones in two nearby cemeteries. Using an Equotip D surface hardness tester, rates of change in surface hardness for top and bottom sections of the headstones were determined and the data evaluated using robust, nonparametric statistical methods. When considering all headstones as one time series, nonlinear behaviour is observed with rates of decline in surface hardness slowing over time. However, breakpoint analysis shows a breakpoint at c. 100 years, with higher rates of surface hardness decline (as measured by QC 50—the regression coefficient for 0.50 quantile regression) up to that point and lower rates thereafter. Up to c. 100 years, surface hardness declines more rapidly in the top versus bottom sections. Possible explanations for the differing rates in surface hardness changes are: (a) inherent natural stone variability and/or different weathering-stress history; (b) the use of two different Portland limestone varieties; (c) synergistic effects of microclimates and lichen cover. In order to gain a deeper insight into stone weathering behaviour, future studies could combine surface hardness measurements with surface change methods such as micro-erosion meter and lead plug index over short- and long-term time series on architectural heritage under real-world conditions.


Portland limestone Cemetery headstones Time series Nonparametric statistics Weathering rates 



K. Wilhelm is in receipt of an EPSRC studentship (funded via Grants EP/P504287/1, EP/P505216/1, and EP/P505666/1) with additional support from Proceq. We thank the Leverhulme Trust for funding for the earlier stages of this project through Research Project Grant NBo. F/08 773/F. We thank Michael Greet (CWGC) for providing us with helpful information on the CWGC headstones. Roger Stone (quarryman) gave invaluable insight into Portland quarry procedures, history, and build stone choices. We thank three anonymous reviewers for their comments, which undoubtedly helped to improve this paper.


  1. Alberti AP, Gomes A, Trenhaile A, Oliveira M, Horacio J (2013) Correlating river terrace remnants using an Equotip hardness tester: an example from the Miño River, northwestern Iberian Peninsula. Geomorphology 192:59–70. doi: 10.1016/j.geomorph.2013.03.017 CrossRefGoogle Scholar
  2. Aoki H, Matsukura Y (2007) Effects of rock strength and location heights on growth rates of tafoni-like depressions at sandstone blocks used for a masonry bridge pier in the coastal spray zone. Z Geomorphol 51:115–132CrossRefGoogle Scholar
  3. Ariño X, Ortega-Calvo JJ, Gomez-Bolea A, Saiz-Jimenez C (1995) Lichen colonization of the Roman pavement at Baelo Claudia (Cadiz, Spain): biodeterioration vs. bioprotection. Sci Total Environ 167:353–363. doi: 10.1016/0048-9697(95)04595-R CrossRefGoogle Scholar
  4. Auras M (2011) Leitfaden Naturstein-Monitoring: Nachkontrolle und Wartung als zukunftsweisende Erhaltungsstrategien. Fraunhofer-IRB-Verl, StuttgartGoogle Scholar
  5. Aydin A, Basu A (2005) The Schmidt hammer in rock material characterization. Eng Geol 81:1–14. doi: 10.1016/j.enggeo.2005.06.006 CrossRefGoogle Scholar
  6. Bell FG (1993) Durability of carbonate rock as building stone with comments on its preservation. Environ Geol 21:187–200. doi: 10.1007/BF00775905 CrossRefGoogle Scholar
  7. Bell FG, Coulthard JM (1990) Stone preservation with illustrative examples from the United Kingdom. Environ Geol Water Sci 16:75–81. doi: 10.1007/BF01702226 CrossRefGoogle Scholar
  8. Bjelland T, Thorseth IH (2002) Comparative studies of the lichen–rock interface of four lichens in Vingen, western Norway. Chem Geol 192:81–98. doi: 10.1016/S0009-2541(02)00193-6 CrossRefGoogle Scholar
  9. Bonazza A, Messina P, Sabbioni C, Grossi CM, Brimblecombe P (2009) Mapping the impact of climate change on surface recession of carbonate buildings in Europe. Sci Total Environ 407:2039–2050. doi: 10.1016/j.scitotenv.2008.10.067 CrossRefGoogle Scholar
  10. Bondell HD, Reich BJ, Wang H (2010) Non-crossing quantile regression curve estimation. Biometrika 97:825–838. doi: 10.1093/biomet/asq048 CrossRefGoogle Scholar
  11. Brimblecombe P, Grossi CM (2009) Millennium-long damage to building materials in London. Sci Total Environ 407:1354–1361. doi: 10.1016/j.scitotenv.2008.09.037 CrossRefGoogle Scholar
  12. Building Research Establishment (BRE) (1997a) Portland Base Bed limestone (Bowers Quarry): technical data sheet. The BRE/British Stone Stone List. Accessed 6 May 2013Google Scholar
  13. Building Research Establishment (BRE) (1997b). Portland Whit Bed limestone (Bowers Quarry): technical data sheet. The BRE/British Stone Stone List. Accessed 6 May 2013Google Scholar
  14. Butlin RN, Coote AT, Devenish M, Hughes I, Hutchens CM, Irwin JG, Lloyd GO, Massey SW, Webb AH, Yates T (1992) Preliminary results from the analysis of stone tablets from the National Materials Exposure Programme (NMEP). Atmos Environ Part B Urb Atmos 26:189–198. doi: 10.1016/0957-1272(92)90022-K CrossRefGoogle Scholar
  15. Cade BS, Noon BR (2003) A gentle introduction to quantile regression for ecologists. Front Ecol Environ 1:412–420. doi:10.1890/1540-9295(2003)001[0412:AGITQR]2.0.CO;2Google Scholar
  16. Camuffo D (2014) Microclimate for cultural heritage: conservation and restoration of indoor and outdoor monuments. Elsevier, AmsterdamGoogle Scholar
  17. Carter N, Viles H (2005) Bioprotection explored: the story of a little known earth surface process. Geomorphology 67:273–281. doi: 10.1016/j.geomorph.2004.10.004 CrossRefGoogle Scholar
  18. Chen J, Blume H, Beyer L (2000) Weathering of rocks induced by lichen colonization—a review. CATENA 39:121–146. doi: 10.1016/S0341-8162(99)00085-5 CrossRefGoogle Scholar
  19. Colvin H (2008) A biographical dictionary of British architects, 1600–1840. Yale University Press, New HavenGoogle Scholar
  20. Commonwealth War Graves Commission. Accessed 01 Sept 2015
  21. Cooke RU, Gibbs GB (1994) Crumbling heritage? Studies of stone weathering in polluted atmospheres. Atmos Environ 28:1355–1356. doi: 10.1016/1352-2310(94)90284-4 CrossRefGoogle Scholar
  22. Cooke RU, Inkpen RJ, Wiggs GFS (1995) Using gravestones to assess changing rates of weathering in the United Kingdom. Earth Surf Proc Land 20:531–546. doi: 10.1002/esp.3290200605 CrossRefGoogle Scholar
  23. Cooper TP, O’Brien PF, Jeffrey DW (1992) Rates of deterioration of Portland limestone in an urban environment. Stud Conserv 37:228. doi: 10.2307/1506352 Google Scholar
  24. Crawley MJ (2005) Statistics: an introduction using R. J. Wiley, ChichesterCrossRefGoogle Scholar
  25. Crawley MJ (2007) The R book. Wiley, ChichesterCrossRefGoogle Scholar
  26. Dette H, Volgushev S (2008) Non-crossing non-parametric estimates of quantile curves. J R Stat Soc Ser B (Stat Methodol) 70:609–627. doi: 10.1111/j.1467-9868.2008.00651.x CrossRefGoogle Scholar
  27. Dubelaar CW, Engering S, Hees R, Koch R, Lorenz H (2003) Lithofacies and petrophysical properties of Portland Base Bed and Portland Whit Bed limestone as related to durability. Heron 48:221–229Google Scholar
  28. Edmunds FH, Schaffer RJ (1932) Portland stone; its geology and properties as a building stone. Proc Geol Assoc 43:225–IN4. doi: 10.1016/S0016-7878(32)80019-2
  29. Efron B (1987) Better bootstrap confidence intervals. J Am Stat Assoc 82:171–185. doi: 10.2307/2289144 CrossRefGoogle Scholar
  30. Emmanuel S (2015) Evidence for non-Gaussian distribution of rock weathering rates. Earth Surf Dyn 3:441–445. doi: 10.5194/esurf-3-441-2015 CrossRefGoogle Scholar
  31. Erceg-Hurn DM, Mirosevich VM (2008) Modern robust statistical methods: an easy way to maximize the accuracy and power of your research. Am Psychol 63:591–601. doi: 10.1037/0003-066X.63.7.591 CrossRefGoogle Scholar
  32. Feal-Pérez A, Blanco-Chao R (2012) Characterization of abrasion surfaces in rock shore environments of NW Spain. Geo Mar Lett 33:1–9. doi: 10.1007/s00367-012-0300-4 Google Scholar
  33. Filzmoser P, Todorov V (2013) Robust tools for the imperfect world. Stat Imperfect Data 245:4–20. doi: 10.1016/j.ins.2012.10.017 Google Scholar
  34. Fort R, Alvarez de Buergo M, Perez-Monserrat EM (2013) Non-destructive testing for the assessment of granite decay in heritage structures compared to quarry stone. Int J Rock Mech Min Sci 61:296–305. doi: 10.1016/j.ijrmms.2012.12.048 Google Scholar
  35. Fowler J, Cohen L, Jarvis P (1998) Practical statistics for field biology. Wiley, ChichesterGoogle Scholar
  36. Futagami Y (2010) Joint research project for the conservation of stone monuments at the Ta Nei Temple: a 2008–2009 study on the effect of microorganisms on the stone surface. National Research Institute for Cultural Properties, Tokyo. In: 16th plenary session—activity reports for distribution and discussion during the—ICC Angkor: Siem Reap—15 December 2009. English version (Original: French), ICC-UNESCO (ed): Phnom Penh, pp 50–53Google Scholar
  37. Futagami Y, Kuchitsu N, Uno T (2008) Joint research project on conservation of stone at Ta Nei Temple in 2007. Joint research project on conservation of stone at Ta Nei Temple in 2007. In: 14th plenary session—activity reports for distribution and discussion during the—ICC Angkor: Siem Reap—28 November 2007. English version (Original: French), ICC-UNESCO (ed): Phnom Penh, pp 62–63Google Scholar
  38. Garcia-Vallès M, Topal T, Vendrell-Saz M (2003) Lichenic growth as a factor in the physical deterioration or protection of Cappadocian monuments. Environ Geol 43:776–781Google Scholar
  39. Godden M (2012) Portland’s quarries and its stone. Accessed 07 Aug 2015
  40. Goudie AS (2006) The Schmidt Hammer in geomorphological research. Prog Phys Geogr 30:703–718. doi: 10.1177/0309133306071954 CrossRefGoogle Scholar
  41. Gray W (1861–1862) On the geology of the Isle of Portland: ordinary meeting, Monday, November 4th, 1861. In: Proceedings of the geologists’ association, vol 1, p 128Google Scholar
  42. Hack R, Huismann M (2002) Estimating the intact rock strength of a rock mass by simple means. In: Rooy JL, Jermy CA (eds) Engineering geology for developing countries—proceedings of 9th congress of the international association for engineering geology and the environment, Durban, South Africa (2002), pp 1971–1977Google Scholar
  43. Hansen CD, Meiklejohn KI, Nel W, Loubser MJ, Van Der Merwe BJ (2013) Aspect-controlled weathering observed on a blockfield in Dronning Maud Land, Antarctica. Geogr Ann Ser A Phys Geogr 95:305–313. doi: 10.1111/geoa.12025 CrossRefGoogle Scholar
  44. Hauke J, Kossowski T (2011) Comparison of values of Pearson’s and Spearman’s correlation coefficients on the same sets of data. Quaest Geogr. doi: 10.2478/v10117-011-0021-1 Google Scholar
  45. Hoke GD, Turcotte DL (2004) The weathering of stones due to dissolution. Environ Geol. doi: 10.1007/s00254-004-1033-0 Google Scholar
  46. Ingham JP (2005) Predicting the frost resistance of building stone. Q J Eng Geol Hydrogeol 38:387–399. doi: 10.1144/1470-9236/04-068 CrossRefGoogle Scholar
  47. Inkpen RJ, Jackson J (2000) Contrasting weathering rates in coastal, urban and rural areas in southern Britain: preliminary investigations using gravestones. Earth Surf Proc Land 25:229–238. doi: 10.1002/(SICI)1096-9837(200003)25:3<229:AID-ESP52>3.0.CO;2-Y CrossRefGoogle Scholar
  48. Inkpen R, Viles H, Moses C, Baily B (2012a) Modelling the impact of changing atmospheric pollution levels on limestone erosion rates in central London, 1980–2010. Atmos Environ 61:476–481. doi: 10.1016/j.atmosenv.2012.07.042 CrossRefGoogle Scholar
  49. Inkpen RJ, Viles H, Moses C, Baily B, Collier P, Trudgill ST, Cooke RU (2012b) Thirty years of erosion and declining atmospheric pollution at St Paul’s Cathedral, London. Atmos Environ 62:521–529. doi: 10.1016/j.atmosenv.2012.08.055 CrossRefGoogle Scholar
  50. Jaynes SM, Cooke RU (1987) Stone weathering in Southeast England. Atmos Environ 21:1601–1622. doi: 10.1016/0004-6981(87)90321-0 CrossRefGoogle Scholar
  51. Kamh GME, Koltuk S (2015) Micro-topographic and geotechnical investigations of sandstone wall on weathering progress, Aachen City, Germany, case study. Arab J Sci Eng. doi: 10.1007/s13369-015-1887-3 Google Scholar
  52. Koenker R (2005) Quantile regression. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  53. Leary E (1983) The building limestones of the British Isles. Department of The Environment, Building Research Establishment; H.M.S.O., Garston, Watford, LondonGoogle Scholar
  54. Lipfert FW (1989) Atmospheric damage to calcareous stones: comparison and reconciliation of recent experimental findings. Atmos Environ (1967) 23:415–429. doi: 10.1016/0004-6981(89)90587-8 CrossRefGoogle Scholar
  55. Logan JM, Hastedt M, Lehnert D, Denton M (1993) Variations of rock properties within a quarry. Int J Rock Mech Min Sci Geomech Abstr 30:1527–1530. doi: 10.1016/0148-9062(93)90151-3 CrossRefGoogle Scholar
  56. Matsui T, Sawada M, Inoue S, Ebisawa T, Kawasaki E, Atomi Y, Nakagawa T (2014) A study on conservative material for the bas-reliefs of the Bayon temple in Angkor Monuments. In: Lee CH, Kim J, Kim RH (eds) Proceedings of the international conference on conservation of stone and earthen architectural heritage, July 2014 Gongju, Republic of Korea. ICOMOS-ISCS; Kongju National University, Gongju, pp 119–126Google Scholar
  57. McCabe S, McAllister D, Warke PA, Gomez-Heras M (2015) Building sandstone surface modification by biofilm and iron precipitation: emerging block-scale heterogeneity and system response. Earth Surf Proc Land 40:112–122. doi: 10.1002/esp.3665 CrossRefGoogle Scholar
  58. McCarroll D (1991) The schmidt hammer, weathering and rock surface roughness. Earth Surf Proc Land 16:477–480. doi: 10.1002/esp.3290160510 CrossRefGoogle Scholar
  59. McIlroy de la Rosa JP, Warke PA, Smith B (2014) The effects of lichen cover upon the rate of solutional weathering of limestone. Geomorphology 220:81–92. doi: 10.1016/j.geomorph.2014.05.030 CrossRefGoogle Scholar
  60. Met Office. Accessed 10 Aug 2015
  61. Mosch S, Siegesmund S (2007) Petrophysical and technical properties of dimensional stones: a statistical approach. Z Deutsch Ges Geowiss 158:821–868. doi: 10.1127/1860-1804/2007/0158-0821 Google Scholar
  62. Moses C, Robinson D, Barlow J (2014) Methods for measuring rock surface weathering and erosion: a critical review. Earth Sci Rev 135:141–161. doi: 10.1016/j.earscirev.2014.04.006 CrossRefGoogle Scholar
  63. Mottershead DN (1997) A morphological study of greenschist weathering on dated coastal structures, South Devon, UK. Earth Surf Proc Land 22:491–506. doi: 10.1002/(SICI)1096-9837(199705)22:5<491:AID-ESP745>3.0.CO;2-4 CrossRefGoogle Scholar
  64. Mottershead DN (2000) Weathering of coastal defensive structures in southwest England: a 500 year stone durability trial. Earth Surf Proc Land 25:1143–1159. doi: 10.1002/1096-9837(200009)25:10<1143:AID-ESP129>3.0.CO;2-N CrossRefGoogle Scholar
  65. Mottershead D, Gorbushina A, Lucas G, Wright J (2003) The influence of marine salts, aspect and microbes in the weathering of sandstone in two historic structures. Build Environ 38:1193–1204. doi: 10.1016/S0360-1323(03)00071-4 CrossRefGoogle Scholar
  66. Muggeo VMR (2003) Estimating regression models with unknown break-points. Stat Med 22:3055–3071. doi: 10.1002/sim.1545 CrossRefGoogle Scholar
  67. Muggeo VMR (2008) Segmented: an R package to fit regression models with broken-line relationships. R News 8:20–25Google Scholar
  68. Niedzielski T, Migoń P, Placek A (2009) A minimum sample size required from Schmidt hammer measurements. Earth Surf Proc Land 34:1713–1725. doi: 10.1002/esp.1851 CrossRefGoogle Scholar
  69. O’Brien P, Bell E, Orr T, Cooper TP (1995) Stone loss rates at sites around Europe. Sci Total Environ 167:111–121CrossRefGoogle Scholar
  70. Özvan A, Dinçer İ, Akın M, Oyan V, Tapan M (2015) Experimental studies on ignimbrite and the effect of lichens and capillarity on the deterioration of Seljuk Gravestones. Eng Geol 185:81–95. doi: 10.1016/j.enggeo.2014.12.001 CrossRefGoogle Scholar
  71. Palmer T (2008) Limestone petrography and durability in English Jurassic Freestones. In: Doyle P (ed) England’s heritage in stone: proceedings of a conference, Tempest Anderson Hall, York, 15-17 March, 2005. English Stone Forum, Folkestone, Kent, pp 66–78Google Scholar
  72. Park HM (2008) Univariate analysis and normality test using SAS, Stata, and SPSS. Technical working paper. The University Information Technology Services (UITS) Center for Statistical and Mathematical Computing, Indiana UniversityGoogle Scholar
  73. Pope GA (2000) Weathering of petroglyphs: direct assessment and implication for dating methods. Antiquity 74:833–843CrossRefGoogle Scholar
  74. Pope GA, Meierding TC, Paradise TR (2002) Geomorphology’s role in the study of weathering of cultural stone. Geomorphology 47:211–225. doi: 10.1016/S0169-555X(02)00098-3 CrossRefGoogle Scholar
  75. Proceq© SA (2006) Concrete test hammer—operating instructions. Accessed July 2015
  76. Proceq© SA (2010) Operating instructions portable metal hardness tester. Accessed July 2015
  77. Razali NM, Wah YB (2011) Power comparisons of Shapiro–Wilk, Kolgomorov–Smirnov, Lilliefors and Anderson–Darling tests. J Stat Model Anal 2:21–33Google Scholar
  78. Ross KD, Butlin RN (1989) Durability tests for building stone. Building Research Establishment, GarstonGoogle Scholar
  79. Seaward M (2001) The role of lichens in the biodeterioration of ancient monuments with particular reference to central Italy. Int Biodeterior Biodegrad 48:202–208. doi: 10.1016/S0964-8305(01)00082-8 CrossRefGoogle Scholar
  80. Siegesmund S, Dürrast H (2010) Physical and mechanical properties of rocks. In: Siegesmund S, Snethlage R, Winkler E (eds) Stone in architecture: properties, durability. Springer, Berlin, pp 97–225Google Scholar
  81. Smith BJ, Prikryl R (2007) Diagnosing decay: the value of medical analogy in understanding the weathering of building stones. Geol Soc Lond Spec Publ 271:1–8. doi: 10.1144/GSL.SP.2007.271.01.01 CrossRefGoogle Scholar
  82. Smith BJ, Gomez-Heras M, McCabe S (2008) Understanding the decay of stone-built cultural heritage. Prog Phys Geogr 32:439–461. doi: 10.1177/0309133308098119 CrossRefGoogle Scholar
  83. Smith BJ, McCabe S, McAllister D, Adamson C, Viles HA, Curran JM (2011) A commentary on climate change, stone decay dynamics and the ‘greening’ of natural stone buildings: new perspectives on ‘deep wetting’. Environ Earth Sci 63:1691–1700. doi: 10.1007/s12665-010-0766-1 CrossRefGoogle Scholar
  84. St. Clair L, Seaward MRD (2004) Biodeterioration of stone surfaces: lichens and biofilms as weathering agents of rocks and cultural heritage. Kluwer, DordrechtCrossRefGoogle Scholar
  85. Stahl T, Winkler S, Quigley M, Bebbington M, Duffy B, Duke D (2013) Schmidt hammer exposure-age dating (SHD) of late quaternary fluvial terraces in New Zealand. Earth Surf Proc Land 38:1838–1850. doi: 10.1002/esp.3427 CrossRefGoogle Scholar
  86. Svahn H (2006) Non-destructive field tests in stone conservation. Riksantikvarieämbetet, StockholmGoogle Scholar
  87. The Churches Conservation Trust (CCT) Accessed July 2015
  88. Török Á (2003) Surface strength and mineralogy of weathering crusts on limestone buildings in Budapest. Build Stone Decay Observ Exp Model 38:1185–1192. doi: 10.1016/S0360-1323(03)00072-6 Google Scholar
  89. Török Á (2007) Characteristics and morphology of weathering crusts on porous limestone, the role of climate and air pollution. In: Olalla C, Estaire J, Sola P (eds) Preservation of natural stone and rock weathering. Taylor & Francis, pp 61–66Google Scholar
  90. Török Á (2008) Black crusts on travertine: factors controlling development and stability. Environ Geol 56:583–594. doi: 10.1007/s00254-008-1297-x CrossRefGoogle Scholar
  91. Townson WG (1975) Lithostratigraphy and deposition of the type Portlandian. J Geol Soc 131:619–638. doi: 10.1144/gsjgs.131.6.0619 CrossRefGoogle Scholar
  92. Trudgill ST, Viles HA (1998) Field and laboratory approaches to limestone weathering. Q J Eng Geol Hydrogeol 31:333–341. doi: 10.1144/GSL.QJEG.1998.031.P4.06 CrossRefGoogle Scholar
  93. Trudgill ST, Viles HA, Inkpen RJ, Cooke RU (1989) Remeasurement of weathering rates, St. Paul’s Cathedral, London. Earth Surf Process Landf 14:175–196. doi: 10.1002/esp.3290140302 CrossRefGoogle Scholar
  94. Trudgill ST, Viles HA, Cooke RU, Inkpen RJ, Heathwaite AL, Houston J (1991) Trends in stone weathering and atmospheric pollution at St Paul’s Cathedral, London 1980–1990. Atmos Environ Part A Gen Top 25:2851–2853. doi: 10.1016/0960-1686(91)90210-X CrossRefGoogle Scholar
  95. Trudgill ST, Viles HA, Inkpen R, Moses C, Gosling W, Yates T, Collier P, Smith DI, Cooke RU (2001) Twenty-year weathering remeasurements at St Paul’s Cathedral, London. Earth Surf Proc Land 26:1129–1142. doi: 10.1002/esp.260 CrossRefGoogle Scholar
  96. Tukey JW (1977) Exploratory data analysis. Addison-Wesley Pub. Co., ReadingGoogle Scholar
  97. Urosevic M, Sebastián E, Cardell C (2013) An experimental study on the influence of surface finishing on the weathering of a building low-porous limestone in coastal environments. Eng Geol 154:131–141. doi: 10.1016/j.enggeo.2012.12.013 CrossRefGoogle Scholar
  98. Van de Wall ARG, Ajalu Msc JS (1997) Characterization of the geotechnical properties of rock material for construction purposes. Int J Rock Mech Min Sci 34:319.e1–319.e12. doi: 10.1016/S1365-1609(97)00208-6
  99. Viles H (2001) Scale issues in weathering studies. Weather Geomorphol 41:63–72. doi: 10.1016/S0169-555X(01)00104-0 CrossRefGoogle Scholar
  100. Viles H (2002) Soiling and decay of N.M.E.P. limestone tablets. Sci Total Environ 292:215–229. doi: 10.1016/S0048-9697(01)01124-X CrossRefGoogle Scholar
  101. Viles H (2005) Microclimate and weathering in the central Namib Desert, Namibia. Geomorphology 67:189–209. doi: 10.1016/j.geomorph.2004.04.006 CrossRefGoogle Scholar
  102. Viles H (2013) Durability and conservation of stone: coping with complexity. Q J Eng Geol Hydrogeol 46:367–375. doi: 10.1144/qjegh2012-053 CrossRefGoogle Scholar
  103. Viles H, Cutler N (2012) Global environmental change and the biology heritage structures. Glob Change Biol 18:2406–2418CrossRefGoogle Scholar
  104. Viles H, Goudie A, Grab S, Lalley J (2011) The use of the Schmidt Hammer and Equotip for rock hardness assessment in geomorphology and heritage science: a comparative analysis. Earth Surf Proc Land 36:320–333. doi: 10.1002/esp.2040 CrossRefGoogle Scholar
  105. Wang C, Jones R, Perry M, Johnson C, Clark P (2013) Using an ultrahigh-resolution regional climate model to predict local climatology. Q J R Meteorol Soc 139:1964–1976. doi: 10.1002/qj.2081 CrossRefGoogle Scholar
  106. Warke PA, Curran JM, Turkington AV, Smith BJ (2003) Condition assessment for building stone conservation: a staging system approach: building Stone Decay: observations, experiments and modeling. Build Environ 38:1113–1123. doi: 10.1016/S0360-1323(03)00085-4 CrossRefGoogle Scholar
  107. Wedekind W, Rüdrich J, Siegesmund S, Rieffel Y (2014) Long-term evaluation of the conservation state of marble statues. In: Lee CH, Kim J, Kim RH (eds) Proceedings of the international conference on conservation of stone and earthen architectural heritage, July 2014 Gongju, Republic of Korea. ICOMOS-ISCS; Kongju National University: Gongju, pp 17–24Google Scholar
  108. Wilhelm K, Viles H, Burke Ò (2016) Low impact surface hardness testing (equotip) on porous surfaces—advances in methodology with implications for rock weathering and stone deterioration research. Earth Surf Proc Land. doi: 10.1002/esp.3882 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Oxford Rock Breakdown Laboratory (OxRBL), School of Geography and the EnvironmentUniversity of OxfordOxfordUK
  2. 2.Nuffield Department of Population HealthUniversity of OxfordOxfordUK

Personalised recommendations