Advertisement

Geochemical evolution and salinization of a coastal aquifer via seepage through peaty lenses

  • Nicolò Colombani
  • Micòl MastrociccoEmail author
Original Article

Abstract

The aim of this study was to determine the role of buried peaty lenses in the salinization process of an unconfined coastal aquifer. To unravel the complex biogeochemical processes that occur between the peat matrix and the flowing through groundwater, two monitoring wells were sampled using high-resolution multilevel straddle packers. Moreover, to quantify the salt release in the aquifer from the peat lenses, a 1-m length column experiment was run for 62 days including a long equilibration step of 37 days, an elution step of 5 days, a stop flow of 15 days and a second elution step of 5 days. The column was monitored using 20 cm spaced ports to allow a precise reconstruction of the biogeochemical processes occurring within the matrix. A numerical model with SEAWAT-4.0 accounting for variable density flow and transport was used to simulate the observed salt concentration eluted from the column. To correctly reproduce the observed concentrations, a dual-domain approach coupled with a mass loading rate from the peat layer had to be accounted for. The results of this study highlight the capability of peat lenses to salinize the aquifer, to release large amount of sulfate and phosphate and to increase the chloride–bromide ratio.

Keywords

Peaty layer Saline groundwater Shallow aquifer Modeling Column experiment 

Notes

Acknowledgments

We gratefully thank Umberto Tessari from the Department of Physics and Earth Sciences of the University of Ferrara for his technical and scientific support.

References

  1. Alcalà FJ, Custodio E (2008) Using the Cl/Br ratio as a tracer to identify the origin of salinity in aquifers in Spain and Portugal. J Hydrol 359(1):189–207. doi: 10.1016/j.jhydrol.2008.06.028 CrossRefGoogle Scholar
  2. Alvarez MDP, Carol E, Dapeña C (2015a) The role of evapotranspiration in the groundwater hydrochemistry of an arid coastal wetland (Península Valdés, Argentina). Sci Total Environ 506–507:299–307. doi: 10.1016/j.scitotenv.2014.11.028 CrossRefGoogle Scholar
  3. Alvarez MDP, Dapeña C, Bouza PJ, Ríos I, Hernández MA (2015b) Groundwater salinization in arid coastal wetlands: a study case from Playa Fracasso, Patagonia, Argentina. Environ Earth Sci 73:7983–7994. doi: 10.1007/s12665-011-1435-8 CrossRefGoogle Scholar
  4. Amorosi A, Centineo MC, Dinelli E, Lucchini F, Tateo F (2002) Geochemical and mineralogical variations as indicators of provenance changes in Late Quaternary deposits of SE Po Plain. Sediment Geol 151:273–292. doi: 10.1016/S0037-0738(01)00261-5 CrossRefGoogle Scholar
  5. Appelo CAJ, Willemsen A, Beekman HE, Griffioen J (1990) Geochemical calculations and observations on salt water intrusions. II. Validation of a geochemical model with laboratory experiments. J Hydrol 120(1):225–250. doi: 10.1016/0022-1694(90)90151-M CrossRefGoogle Scholar
  6. Colombani N, Giambastiani BMS, Mastrocicco M (2014) Predicting salinization trends in a lowland aquifer: Comacchio (Italy). Water Resour Manag 29(2):603–618. doi: 10.1007/s11269-014-0795-8 CrossRefGoogle Scholar
  7. Colombani N, Mastrocicco M, Dinelli E (2015) Trace elements mobility in a saline coastal aquifer of the Po river lowland (IT). J Geochem Explor 159:317–328. doi: 10.1016/j.gexplo.2015.10.009 CrossRefGoogle Scholar
  8. De Louw PGB, Vandenbohede A, Werner AD, Oude Essink GHP (2013) Natural saltwater upconing by preferential groundwater discharge through boils. J Hydrol 490:74–87. doi: 10.1016/j.jhydrol.2013.03.025 CrossRefGoogle Scholar
  9. Dellwig O, Böttcher ME, Lipinski M, Brumsack H-J (2002) Trace metals in Holocene coastal peats and their relation to pyrite formation (NW Germany). Chem Geol 182:423–442. doi: 10.1016/S0009-2541(01)00335-7 CrossRefGoogle Scholar
  10. Einarson MD, Cherry JA (2002) A new multilevel ground water monitoring system using multichannel tubing. Groundw Monit Remediat 22(4):52–65. doi: 10.1111/j.1745-6592.2002.tb00771.x CrossRefGoogle Scholar
  11. Fass T, Cook PG, Stieglitz T, Herczeg AL (2007) Development of saline groundwater through transpiration of sea water. Ground Water 45(6):703–710. doi: 10.1111/j.1745-6584.2007.00344.x CrossRefGoogle Scholar
  12. Frascari F, Matteucci G, Giordano P (2002) Evaluation of a eutrophic coastal lagoon ecosystem from the study of bottom sediments. Hydrobiologia 475(476):387–401. doi: 10.1023/A:1020399627807 CrossRefGoogle Scholar
  13. Giambastiani BMS, Colombani N, Mastrocicco M, Fidelibus MD (2013) Characterization of the lowland coastal aquifer of Comacchio (Ferrara, Italy): hydrology, hydrochemistry and evolution of the system. J Hydrol 501:35–44. doi: 10.1016/j.jhydrol.2013.07.037 CrossRefGoogle Scholar
  14. Gomis-Yagües V, Boluda-Botella N, Ruiz-Beviá F (1997) Column displacement experiments to validate hydrogeochemical models of seawater intrusions. J Contam Hydrol 29(1):81–91. doi: 10.1016/S0169-7722(96)00088-5 CrossRefGoogle Scholar
  15. Griffioen J (1994) Uptake of phosphate by iron hydroxides during seepage in relation to development of groundwater composition in coastal areas. Environ Sci Technol 28(4):675–681. doi: 10.1021/es00053a022 CrossRefGoogle Scholar
  16. Griffioen J (2006) Extent of immobilisation of phosphate during aeration of nutrient-rich, anoxic groundwater. J Hydrol 320(3):359–369. doi: 10.1016/j.jhydrol.2005.07.047 CrossRefGoogle Scholar
  17. Heijs SK, Azzoni R, Giordani G, Jonkers HM, Nizzoli D, Viaroli P, Van Gemerden H (2000) Sulfide-induced release of phosphate from sediments of coastal lagoons and the possible relation to the disappearance of Ruppia sp. Aquat Microb Ecol 23(1):85–95CrossRefGoogle Scholar
  18. Lamers LP, Tomassen HB, Roelofs JG (1998) Sulfate-induced eutrophication and phytotoxicity in freshwater wetlands. Environ Sci Technol 32(2):199–205. doi: 10.1021/es970362f CrossRefGoogle Scholar
  19. Langevin CD, Zygnerski M (2013) Effect of sea-level rise on salt water intrusion near a coastal well field in Southeastern Florida. Ground Water 51(5):781–803. doi: 10.1111/j.1745-6584.2012.01008.x CrossRefGoogle Scholar
  20. Langevin CD, Thorne DT Jr, Dausman AM, Sukop MC, Guo W (2007) SEAWAT version 4: a computer program for simulation of multi-species solute and heat transport: U.S. Geological Survey Techniques and Methods. Book 6, Chapter A22, p 39Google Scholar
  21. Logan WS, Auge MP, Panarello HO (1999) Bicarbonate, sulphate and chloride water in a shallow, clastic-dominated coastal flow system, Argentina. Ground Water 37:287–295CrossRefGoogle Scholar
  22. Lord CJ III (1982) A selective and precise method for pyrite determination in sedimentary materials: research-method paper. J Sediment Petrol 52(2):644–666CrossRefGoogle Scholar
  23. Lorenzen G, Sprenger C, Baudron P, Gupta D, Pekdeger A (2012) Origin and dynamics of groundwater salinity in the alluvial plains of western Delhi and adjacent territories of Haryana State, India. Hydrol Process 26:2333–2345. doi: 10.1002/hyp.8311 CrossRefGoogle Scholar
  24. Mastrocicco M, Prommer H, Pasti L, Palpacelli S, Colombani N (2011) Evaluation of saline tracer performance during electrical conductivity groundwater monitoring. J Contam Hydrol 123(3):157–166. doi: 10.1016/j.jconhyd.2011.01.001 CrossRefGoogle Scholar
  25. Mastrocicco M, Giambastiani BMS, Severi P, Colombani N (2012) The importance of data acquisition techniques in saltwater intrusion monitoring. Water Resour Manag 26(10):2851–2866. doi: 10.1007/s11269-012-0052-y CrossRefGoogle Scholar
  26. Mastrocicco M, Giambastiani BMS, Colombani N (2013) Ammonium occurrence in a salinized lowland coastal aquifer (Ferrara, Italy). Hydrol Process 27(24):3495–3501. doi: 10.1002/hyp.9467 CrossRefGoogle Scholar
  27. McMahon PB, Chapelle FH (2008) Redox processes and water quality of selected principal aquifer systems. Ground Water 46(2):259–271. doi: 10.1111/j.1745-6584.2007.00385.x CrossRefGoogle Scholar
  28. Morris JT, Sundareshwar PV, Nietch CT, Kjerfve B, Cahoon DR (2002) Responses of coastal wetlands to rising sea level. Ecol 83(10):2869–2877CrossRefGoogle Scholar
  29. Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I: a discussion of principles. J Hydrol 10(3):282–290. doi: 10.1016/0022-1694(70)90255-6 CrossRefGoogle Scholar
  30. Netzer L, Weisbrod N, Kurtzman D, Nasser A, Graber ER, Ronen D (2011) Observations on vertical variability in groundwater quality: implications for aquifer management. Water Resour Manag 25:1315–1324. doi: 10.1007/s11269-010-9746-1 CrossRefGoogle Scholar
  31. Oswald SE, Kinzelbach W (2004) Three-dimensional physical benchmark experiments to test variable-density flow models. J Hydrol 290(1):22–42. doi: 10.1016/j.jhydrol.2003.11.037 CrossRefGoogle Scholar
  32. OudeEssink GHP, Van Baaren ES, De Louw PGB (2010) Effects of climate change on coastal groundwater systems: A modeling study in the Netherlands. Water Resour Res 46(10):W00F04. doi: 10.1029/2009WR008719 Google Scholar
  33. Ridd PV, Stieglitz T (2002) Dry season salinity changes in arid estuaries fringed by mangroves and saltflats. Estuar Coast Shelf Sci 54(6):1039–1049. doi: 10.1006/ecss.2001.0876 CrossRefGoogle Scholar
  34. Robinson BW, Gunatilaka A (1991) Stable isotope studies of the hydrological regime of sabkhas in southern Kuwait, Arabian Gulf. Sediment Geol 73:141–159. doi: 10.1016/0037-0738(91)90027-B CrossRefGoogle Scholar
  35. Russak A, Sivan O, Herut B, Lazar B, Yechieli Y (2015) The effect of salinization and freshening events in coastal aquifers on nutrient characteristics as deduced from column experiments under aerobic and anaerobic conditions. J Hydrol 529:1282–1292. doi: 10.1016/j.jhydrol.2015.07.034 CrossRefGoogle Scholar
  36. Smolders AJ, Tomassen H, Lamers LP, Lomans BP, Roelofs JG (2002) Peat bog restoration by floating raft formation: the effects of groundwater and peat quality. J Appl Ecol 39(3):391–401. doi: 10.1046/j.1365-2664.2002.00724.x CrossRefGoogle Scholar
  37. Stefani M, Vincenzi S (2005) The interplay of eustasy, climate and human activity in the late Quaternary depositional evolution and sedimentary architecture of the Po Delta system. Mar Geol 223:19–48. doi: 10.1016/j.margeo.2005.06.029 CrossRefGoogle Scholar
  38. Sullivan EJ, Reimus PW, Couce DA (2003) Transport of a reactive tracer in saturated alluvium described using a three component cation exchange model. J Contam Hydrol 62–63:675–694. doi: 10.1016/S0169-7722(02)00182-1 CrossRefGoogle Scholar
  39. Tiessen H, Moir JO (1993) Total and organic carbon. In: Carter ME (ed) Soil sampling and methods of analysis. Lewis Publishers, Ann Arbor MI, pp 187–211Google Scholar
  40. UNESCO (1981) Background papers and supporting data on the Practical Salinity Scale 1978. UNESCO Tech Pap Mar Sci 37:1–144Google Scholar
  41. van Genuchten MTh, Wierenga PJ (1976) Mass transfer studies in sorbing porous media, I, analytical solutions. Soil Sci Soc Am J 50:473–480CrossRefGoogle Scholar
  42. Warner N, Lgourna Z, Bouchaou L, Boutaleb S, Tagma T, Hsaissoune M, Vengosh A (2013) Integration of geochemical and isotopic tracers for elucidating water sources and salinization of shallow aquifers in the sub-Saharan Drâa Basin, Morocco. Appl Geochem 34:140–151. doi: 10.1016/j.apgeochem.2013.03.005 CrossRefGoogle Scholar
  43. Winkel L, Berg M, Stengel C, Rosenberg T (2008) Hydrogeological survey assessing arsenic and other groundwater contaminants in the lowlands of Sumatra, Indonesia. Appl Geochem 23(11):3019–3028. doi: 10.1016/j.apgeochem.2008.06.021 CrossRefGoogle Scholar
  44. Zheng C, Weaver J, Tonkin M (2010) MT3DMS, a modular three-dimensional multispecies transport model—user guide to the hydrocarbon spill source (HSS) package. US Environmental Protection Agency Technical ReportGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Earth Sciences“Sapienza” UniversityRomeItaly
  2. 2.Department of Environmental, Biological and Pharmaceutical Sciences and TechnologiesSecond University of NaplesCasertaItaly

Personalised recommendations