Heterogeneity of glacial lake expansion and its contrasting signals with climate change in Tarim Basin, Central Asia

  • Xin Wang
  • Qionghuan Liu
  • Shiyin Liu
  • Junfeng Wei
  • Zongli Jiang
Thematic Issue
  • 241 Downloads
Part of the following topical collections:
  1. Water in Central Asia

Abstract

On the basis of Landsat TM/ETM +/OLI imagery in the years 1990, 2000 and 2013, changes of lake area were detected and its contrasting signals with climate change are addressed for Tarim Basin in Central Asia. During the past 23 years, the lake area has expanded at an average rate of 0.67 %/a, with the fastest rates in Altun Shan and Tian Shan mountains and slower rates in the Karakoram and Pamir, which indicates spatially heterogeneous warmer and wetter climatic signals in the basin. Examining decades, the average expansion rate of lake area (0.98 %/a) over 2000–2013 was about four times that (0.23 %/a) of 1990–2000, indicating accelerated warmer–wetter trends around the transition year 2000 in the mountain areas. Discrepant area expansion of different types of glacial lake implies contrasting signals of climate change in the Tarim Basin. Fewer direct climatic signals can be inferred from changes of supraglacial lakes. Ice-contacting lakes characterized by the fastest expansion rate (3.35 %/a) depict accelerated glacier shrinkage caused by climate warming. Non-glacier-fed lakes expansion at the rate of 0.57 %/a reflect an apparent increase of precipitation in the mountains of Tarim Basin.

Keywords

Tarim Basin Glacial lake expansion Climate signals Remote sensing 

Notes

Acknowledgments

We thank Chai Kaiguo, Shu Meihai, Chen Shiyin, Huang Rong, Zhu Xiaox, Li Yuejia, Peng Xin and Zhu Zhihong in data collection and processing. This project was supported by National Science Foundation of China (No. 41271091) and the Ministry of Science and Technology of China (2013FY111400). We sincerely appreciate the two reviewers’ valuable comments and suggestions and the editor’s efforts in improving this manuscript.

Supplementary material

12665_2016_5498_MOESM1_ESM.docx (98 kb)
Supplementary material 1 (DOCX 97 kb)

References

  1. Aizen VB, Aizen EM, Melack JM, Dozier J (1997) Climatic and hydrologic changes in the Tien Shan, Central Asia. J Clim 10:1393–1404. doi:10.1175/1520-0442 CrossRefGoogle Scholar
  2. Bolch T et al (2012) The state and fate of Himalayan glaciers. Science 336:310–314. doi:10.1126/science.1215828 CrossRefGoogle Scholar
  3. Capps DM, Clague JJ (2014) Evolution of glacier-dammed lakes through space and time; Brady Glacier, Alaska, USA. Geomorphology 210:59–70. doi:10.1016/j.geomorph.2013.12.018 CrossRefGoogle Scholar
  4. Changchun X, Yaning C, Weihong L, Yapeng C, Hongtao G (2007) Potential impact of climate change on snow cover area in the Tarim River basin. Environ Geol 53:1465–1474. doi:10.1007/s00254-007-0755-1 CrossRefGoogle Scholar
  5. Chen Y, Xu C, Chen Y, Li W, Liu J (2010) Response of glacial-lake outburst floods to climate change in the Yarkant River basin on northern slope of Karakoram Mountains. China. Quat Int. 226:75–81. doi:10.1016/j.quaint.2010.01.003 CrossRefGoogle Scholar
  6. Duethmann D et al (2015) Attribution of streamflow trends in snow‐and glacier melt dominated catchments of the Tarim River, Central Asia. Water Resour Res. doi:10.1002/2014WR016716 Google Scholar
  7. Fan Y, Chen Y, Liu Y, Li W (2013) Variation of baseflows in the headstreams of the Tarim River Basin during 1960–2007. J Hydrol 487:98–108. doi:10.1016/j.jhydrol.2013.02.037 CrossRefGoogle Scholar
  8. Fujita K, Nuimura T (2011) Spatially heterogeneous wastage of Himalayan glaciers. Prog Nat Sci. doi:10.1073/pnas.1106242108/-/DCSupplemental Google Scholar
  9. Gardelle J, Arnaud Y, Berthier E (2011) Contrasted evolution of glacial lakes along the Hindu Kush Himalaya mountain range between 1990 and 2009. Glob Planet Change 75:47–55. doi:10.1016/j.gloplacha.2010.10.003 CrossRefGoogle Scholar
  10. Gardelle J, Berthier E, Arnaud Y (2012) Slight mass gain of Karakoram glaciers in the early twenty-first century. Nat Geosci 5:322–325. doi:10.1038/ngeo1450 CrossRefGoogle Scholar
  11. Gardelle J, Berthier E, Arnaud Y, Kääb A (2013) Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011. Cryosphere 7:1263–1286. doi:10.5194/tc-7-1263-2013 CrossRefGoogle Scholar
  12. Gardner AS et al (2013) A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 340:852–857. doi:10.1126/science.1234532 CrossRefGoogle Scholar
  13. Hall DK, Bayr KJ, Schöner W, Bindschadler RA, Chien JYL (2003) Consideration of the errors inherent in mapping historical glacier positions in Austria from the ground and space (1893–2001). Remote Sens Environ 86:566–577. doi:10.1016/s0034-4257(03)00134-2 CrossRefGoogle Scholar
  14. Hanshaw MN, Bookhagen B (2014) Glacial areas, lake areas, and snow lines from 1975 to 2012: status of the Cordillera Vilcanota, including the Quelccaya Ice Cap, northern central Andes, Peru. Cryosphere 8:359–376. doi:10.5194/tc-8-359-2014 CrossRefGoogle Scholar
  15. Huggel C, Kääb A, Haeberli W, Teysseire P, Paul F (2002) Remote sensing based assessment of hazards from glacier lake outbursts: a case study in the Swiss Alps. Can Geotech J 39:316–330. doi:10.1139/t01-099 CrossRefGoogle Scholar
  16. Immerzeel WW, van Beek LP, Bierkens MF (2010) Climate change will affect the Asian water towers. Science 328:1382–1385. doi:10.1126/science.1183188 CrossRefGoogle Scholar
  17. Kääb A, Treichler D, Nuth C, Berthier E (2015) Brief communication: contending estimates of 2003–2008 glacier mass balance over the Pamir–Karakoram–Himalaya. Cryosphere 9:557–564. doi:10.5194/tc-9-557-2015 CrossRefGoogle Scholar
  18. Kang S, Xu Y, You Q, Flügel W-A, Pepin N, Yao T (2010) Review of climate and cryospheric change in the Tibetan Plateau. Environ Res Lett 5:015101. doi:10.1088/1748-9326/5/1/015101 CrossRefGoogle Scholar
  19. Karthe D, Chalov S, Borchardt D (2015) Water resources and their management in central Asia in the early twenty first century: status, challenges and future prospects. Environ Earth Sci 73(2):487–499. doi:10.1007/s12665-014-3789-1 CrossRefGoogle Scholar
  20. Kumar P, Kotlarski S, Moseley C, Sieck K, Frey H, Stoffel M, Jacob D (2015) Response of Karakoram-Himalayan glaciers to climate variability and climatic change: a regional climate model assessment. Geophys Res Lett 42:1818–1825. doi:10.1002/2015gl063392 CrossRefGoogle Scholar
  21. Kundzewicz ZW, Merz B, Vorogushyn S, Hartmann H, Duethmann D, Wortmann M, Huang S, Su B, Jiang T, Krysanova V (2015) Analysis of changes in climate and river discharge with focus on seasonal runoff predictability in the Aksu River Basin. Environ Earth Sci 73:501–516. doi:10.1007/s12665-014-3137-5 CrossRefGoogle Scholar
  22. Li J, Sheng Y (2012) An automated scheme for glacial lake dynamics mapping using Landsat imagery and digital elevation models: a case study in the Himalayas. Int J Remote Sens 33:5194–5213. doi:10.1080/01431161.2012.657370 CrossRefGoogle Scholar
  23. Livingstone SJ, Clark CD, Tarasov L (2013) Modelling North American palaeo-subglacial lakes and their meltwater drainage pathways. Earth Planet Lett 375:13–33. doi:10.1016/j.epsl.2013.04.017 CrossRefGoogle Scholar
  24. Mayr E, Juen M, Mayer C, Usubaliev R, Hagg W (2014) Modeling runoff from the Inylchek Glaciers and filling of Ice-Dammed Lake Merzbacher, Central Tian Shan. Geogr Ann A 96:609–625. doi:10.1111/geoa.12061 Google Scholar
  25. Narama C, Kääb A, Duishonakunov M, Abdrakhmatov K (2010) Spatial variability of recent glacier area changes in the Tien Shan Mountains, Central Asia, using Corona (~1970), Landsat (~2000), and ALOS (~2007) satellite data. Glob Planet Change 71:42–54. doi:10.1016/j.gloplacha.2009.08.002 CrossRefGoogle Scholar
  26. Neckel N, Kropáček J, Bolch T, Hochschild V (2014) Glacier mass changes on the Tibetan Plateau 2003–2009 derived from ICESat laser altimetry measurements. Environ Res Lett 9:014009. doi:10.1088/1748-9326/9/1/014009 CrossRefGoogle Scholar
  27. Nie Y, Liu Q, Liu S (2013) Glacial Lake Expansion in the Central Himalayas by Landsat Images, 1990–2010. PLoS One 8(12):1–8. doi:10.1371/journal.pone.0083973.g001 CrossRefGoogle Scholar
  28. Paul F, Huggel C, Kääb A (2004) Combining satellite multispectral image data and a digital elevation model for mapping debris-covered glaciers. Remote Sens Environ 89:510–518. doi:10.1016/j.rse.2003.11.007 CrossRefGoogle Scholar
  29. Qiao L, Mayer C, Liu S (2015) Distribution and interannual variability of supraglacial lakes on debris-covered glaciers in the Khan Tengri-Tumor Mountains Central Asia. Environ Res Lett 10:014014. doi:10.1088/1748-9326/10/1/014014 CrossRefGoogle Scholar
  30. Quincey DJ, Richardson SD, Luckman A, Lucas RM, Reynolds JM, Hambrey MJ, Glasser NF (2007) Early recognition of glacial lake hazards in the Himalaya using remote sensing datasets. Glob Planet Change 56:137–152. doi:10.1016/j.gloplacha.2006.07.013 CrossRefGoogle Scholar
  31. Röhl K (2008) Characteristics and evolution of supraglacial ponds on debris-covered Tasman Glacier, New Zealand. J Glaciol 54:867–880. doi:10.3189/002214308787779861 CrossRefGoogle Scholar
  32. Sakai A, Nishimura K, Kadota T, Takeuchi N (2009) Onset of calving at supraglacial lakes on debris-covered glaciers of the Nepal Himalaya. J Glaciol 55:909–917CrossRefGoogle Scholar
  33. Sakai A, Nuimura T, Fujita K, Takenaka S, Nagai H, Lamsal D (2015) Climate regime of Asian glaciers revealed by GAMDAM Glacier Inventory. Cryosphere 9:865–880. doi:10.5194/tc-9-865-2015 CrossRefGoogle Scholar
  34. Salerno F, Thakuri S, D’Agata C, Smiraglia C, Manfredi EC, Viviano G, Tartari G (2012) Glacial lake distribution in the Mount Everest region: uncertainty of measurement and conditions of formation. Glob Planet Change 92–93:30–39. doi:10.1016/j.gloplacha.2012.04.001 CrossRefGoogle Scholar
  35. Schneider D, Huggel C, Cochachin A, Guillén S, García J (2014) Mapping hazards from glacier lake outburst floods based on modelling of process cascades at Lake 513, Carhuaz, Peru. Adv Geosci 35:145–155. doi:10.5194/adgeo-35-145-2014 CrossRefGoogle Scholar
  36. Shangguan D, Liu S, Ding Y, Ding L, Xu J, Jing L (2009) Glacier changes during the last 40 years in the Tarim Interior River basin, northwest China. Prog Nat Sci 19:727–732. doi:10.1016/j.pnsc.2008.11.002 CrossRefGoogle Scholar
  37. Song C, Huang B, Richards K, Ke L, Hien Phan V (2014) Accelerated lake expansion on the Tibetan Plateau in the 2000s: induced by glacial melting or other processes? Water Resour Res 50:3170–3186. doi:10.1002/2013wr014724 CrossRefGoogle Scholar
  38. Sorg A, Bolch T, Stoffel M, Solomina O, Beniston M (2012) Climate change impacts on glaciers and runoff in Tien Shan (Central Asia). Nat Clim Change 2:725–731. doi:10.1038/NCLIMATE1592 CrossRefGoogle Scholar
  39. Tao H, Gemmer M, Bai Y, Buda SuB, Mao W (2011) Trends of streamflow in the Tarim River Basin during the past 50 years: human impact or climate change? J Hydrol 400:1–9. doi:10.1016/j.jhydrol.2011.01.016 CrossRefGoogle Scholar
  40. Tao H, Borth H, Fraedrich K, Su B, Zhu X (2014) Drought and wetness variability in the Tarim River Basin and connection to large-scale atmospheric circulation. Int J Climatol 34:2678–2684. doi:10.1002/joc.3867 CrossRefGoogle Scholar
  41. Wang X, Liu S, Ding Y, Guo W, Jiang Z, Lin J, Han Y (2012) An approach for estimating the breach probabilities of moraine-dammed lakes in the Chinese Himalayas using remote-sensing data. Nat Hazard Earth Sys 12:3109–3122. doi:10.5194/nhess-12-3109-2012 CrossRefGoogle Scholar
  42. Wang X, Ding Y, Liu S, Jiang L, Wu K, Jiang Z, Guo W (2013a) Changes of glacial lakes and implications in Tian Shan, central Asia, based on remote sensing data from 1990 to 2010. Environ Res Lett 8:044052. doi:10.1088/1748-9326/8/4/044052 CrossRefGoogle Scholar
  43. Wang X, Siegert F, A-g Zhou, Franke J (2013b) Glacier and glacial lake changes and their relationship in the context of climate change, Central Tibetan Plateau 1972–2010. Glob Planet Change 111:246–257. doi:10.1016/j.gloplacha.2013.09.011 CrossRefGoogle Scholar
  44. Wang W, Xiang Y, Gao Y, Lu A, Yao T (2014) Rapid expansion of glacial lakes caused by climate and glacier retreat in the Central Himalayas. Hydrol Process 29:859–874. doi:10.1002/hyp.10199 CrossRefGoogle Scholar
  45. Wang N, Wu H, Wu Y, Chen A (2015) Variations of the glacier mass balance and lake water storage in the Tarim Basin, northwest China, over the period of 2003–2009 estimated by the ICESat-GLAS data. Environ Earth Sci 74:1997–2008. doi:10.1007/s12665-015-4662-6 CrossRefGoogle Scholar
  46. Yao T et al (2012) Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat Clim Change 2:663–667. doi:10.1038/nclimate1580 CrossRefGoogle Scholar
  47. Zech R, Abramowski U, Glaser B, Sosin P, Kubik PW, Zech W (2005) Late Quaternary glacial and climate history of the Pamir Mountains derived from cosmogenic 10Be exposure ages. Quat Res 64:212–220. doi:10.1016/j.yqres.2005.06.002 CrossRefGoogle Scholar
  48. Zhang G, Yao T, Xie H, Zhang K, Zhu F (2014) Lakes’ state and abundance across the Tibetan Plateau. Chinese Sci Bull 59:3010–3021. doi:10.1007/s11434-014-0258-x CrossRefGoogle Scholar
  49. Zhang G, Yao T, Xie H, Wang W, Yang W (2015) An inventory of glacial lakes in the Third Pole region and their changes in response to global warming. Glob Planet Change 131:148–157. doi:10.1016/j.gloplacha.2015.05.013 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Xin Wang
    • 1
    • 2
  • Qionghuan Liu
    • 1
  • Shiyin Liu
    • 2
  • Junfeng Wei
    • 1
  • Zongli Jiang
    • 1
  1. 1.Department of GeographyHunan University of Science and TechnologyXiangtanChina
  2. 2.State Key Laboratory of Cryosphere Science, Cold and Arid Regions Environmental and Engineering Research InstituteCASLanzhouChina

Personalised recommendations