Spatial variability of cave-air carbon dioxide and methane concentrations and isotopic compositions in a semi-arid karst environment

  • L. K. McDonough
  • C. P. Iverach
  • S. Beckmann
  • M. Manefield
  • G. C. Rau
  • A. Baker
  • B. F. J. Kelly
Original Article

Abstract

There is insufficient information on the movement of air in karst environments to constrain the uncertainty associated with quantifying sources and sinks of methane (CH4) and carbon dioxide (CO2) within caves for global carbon accounting. We analysed cave-air samples for their CO2 and CH4 concentrations ([CO2] and [CH4]) and carbon isotopic compositions from sampling campaigns in winter (August 2014) and summer (February 2015) at numerous heights and locations throughout Gaden and Cathedral caves, in a semi-arid environment, Wellington Caves, NSW, Australia. Ventilation is the dominant control on cave-air CO2 and CH4, with the highest cave-air CO2 concentrations ([CO2]cave) occurring in summer, in association with the lowest cave-air CH4 concentrations ([CH4]cave). Analyses show that the cave-air CO2 has both atmospheric and soil sources. Soil air and cave air in both caves undergo methanogenesis and methanotrophy, but we identify cave-specific differences in cave-air CH4 and CO2. [CH4]cave in Cathedral Cave shows an inverse relationship to [CO2]cave, particularly in areas separated from the main cave passage. In contrast, Gaden Cave has near-atmospheric [CH4]cave and isotopic ratios present at all locations sampled in winter. Where no ventilation is occurring in summer, [CH4]cave in Gaden Cave decreases, but remains reasonably high compared to Cathedral Cave. Our research shows adjacent caves vary in their ability to act as a net sink for CH4, and highlights the need for further studies before global generalisations can be made about the carbon budget of karst environments.

Keywords

Karst Methane sink Semi-arid Carbon dioxide Caves Isotopic ratio 

Notes

Acknowledgments

Completion of this study was supported by the NCGRT. Cave survey data were provided by Phil Maynard, Ian Cooper, Kevin Moore, Greg Ryan and Kier Vaughan-Taylor. Thanks go to Wellington Caves’ staff and Mike Augee, for providing accommodation and access to the site. We also thank the NCRIS Infrastructure program for funding the purchase of the Picarro systems. Thank you to Lewis Adler from the Bioanalytical Mass Spectrometry Facility at UNSW, Australia for analysing the δ13C values for thinly bedded and massive limestone samples from Wellington. Assistance in the collection of samples and analysis of samples by Justin Snyder is also appreciated.

Supplementary material

12665_2016_5497_MOESM1_ESM.doc (2.8 mb)
Supplementary material 1 (DOC 2832 kb)

References

  1. Atkinson TC (1977) Carbon dioxide in the atmosphere of the unsaturated zone: an important control of groundwater hardness in lime-stones. J Hydrol 35:111–123CrossRefGoogle Scholar
  2. Baker A, Genty D (1998) Environmental pressures on conserving cave speleothems: effects of changing surface land use and increased cave tourism. J Environ Manage 53:165–175CrossRefGoogle Scholar
  3. Baker A, Wilson R, Fairchild IJ, Franke J, Spötl C, Mattey D, Trouet V, Fuller L (2011) High resolution δ18O and δ13C records from an annually laminated Scottish stalagmite and relationship with last millennium climate. Global Planet Change 79:303–311CrossRefGoogle Scholar
  4. Baldini JUL, Baldini LM, McDermott F, Clipson N (2006) Carbon dioxide sources, sinks, and spatial variability in shallow temperature zone caves: evidence from Ballynamintra Cave, Ireland. J Cave Karst Stud 68:4–11Google Scholar
  5. Baldini JUL, McDermott F, Hoffmann DL, Richards DA, Clipson N (2008) Very high-frequency and seasonal cave atmosphere pCO2 variability: implications for stalagmite growth and oxygen isotope-based paleoclimate records. Earth Planet Sci Lett 272(1–2):118–129CrossRefGoogle Scholar
  6. Blyth AJ, Jex CN, Baker A, Khan SJ, Schouten S (2014) Contrasting distributions of glycerol dialkyl glycerol tetraethers (GDGT’s) in speleothems and associated soils. Org Geochem 69:1–10. doi:10.1016/j.orggeochem.2014.01.013 CrossRefGoogle Scholar
  7. Bourges F, Genthon P, Mangin A, D’Hulst D (2006) Microclimate of l’Aven d’Orgnac and other French limestone caves (Chauvet, Esparros, Marsoulas). Int J Climatol 26(12):1651–1670. doi:10.1002/joc.1327 CrossRefGoogle Scholar
  8. Breecker DO, Payne AE, Quade J, Banner JL, Ball CE, Meyer KW, Cowan BD (2012) The sources and sinks of CO2 in caves under mixed woodland and grassland vegetation. Geochim Cosmochim Acta 96:230–246CrossRefGoogle Scholar
  9. Čerňanský A, Hutchinon MN (2013) A new large fossil species of Tiliqua (Squamata; Scincidae) from the Pliocene of the Wellington Caves (New South Wales, Australia). Alcheringa 37(1):131–136CrossRefGoogle Scholar
  10. Coleman DD, Risotto JB, Schoell M (1981) Fractionation of carbon and hydrogen isotopes by methane-oxidising bacteria. Geochim et Cosmochim Acta 45(7):1033–1037. doi:10.1016/0016-7037(81)90129-0 CrossRefGoogle Scholar
  11. Cowan B, Osborne M, Banner JL (2013) Temporal variability of cave-air CO2 in central Texas. J Cave Karst Stud 75:38–50CrossRefGoogle Scholar
  12. Cuezva S, Fernandez-Cortes A, Benavente D, Serrano-Ortiz P, Kowalski AS, Sanchez-Moral S (2011) Short-term CO2(g) exchange between a shallow karstic cavity and the external atmosphere during summer: role of the surface soil layer. Atmos Environ 45:1418–1427CrossRefGoogle Scholar
  13. Cuthbert MO, Baker A, Jex CN, Graham PW, Treble PC, Andersen MS, Ackworth RI (2014a) Drip water isotopes in semi-arid karst: implications for speleothem palaeoclimatology. Earth Planet Sci Lett 395:194–204CrossRefGoogle Scholar
  14. Cuthbert MO, Rau GC, Andersen MS, Roshan H, Rutlidge H, Marjo CE, Markowska M, Jex CN, Graham PW, Mariethoz G, Acworth RI, Baker A (2014b) Evaporative cooling of speleothems. Sci Rep 4:5162. doi:10.1038/srep05162 CrossRefGoogle Scholar
  15. Deininger M, Fohlmeister J, Scholz D, Mangini A (2012) Isotope disequilibrium effects: the influence of evaporation and ventilation effects on the carbon and oxygen isotope compositions of speleothems—a model approach. Geochim Cosmochim Acta 96:57–79CrossRefGoogle Scholar
  16. Dlugokencky EJ, Myers RC, Lang PM, Masarie KA, Crotwell AM, Thoning KW, Hall BD, Elkins JW, Steele LP (2005) Conversion of NOAA CMDL atmospheric dry air CH4 mole fractions to a gravimetrically prepared standard scale. J Geophys Res 110:D18306. doi:10.1029/2005JD006035 CrossRefGoogle Scholar
  17. Dulinski M, Rozanski K (1990) Formation of 13C/12C isotope ratios in speleothems: a semi-dynamic model. Radiocarbon 32:7–16Google Scholar
  18. Ek C, Godissart J (2014) Carbon dioxide in cave air and soil air in some karstic areas of Belgium. A prospective view. Geol Belg 17:102–106Google Scholar
  19. Faimon J, Stelcl J, Sas D (2006) Anthropogenic CO2-flux into cave atmosphere and its environmental impact: a case study in the Cisařská Cave (Moravian Karst, Czech Republic). Sci Total Environ 369:231–245. doi:10.1016/j.scitotenv.2006.04.006 CrossRefGoogle Scholar
  20. Fairchild IJ, Baker A (2012) Speleothem science. From process to past environment. Wiley-Blackwell, Hoboken, p 450CrossRefGoogle Scholar
  21. Fairchild IJ, McMillan EA (2007) Speleothems as indicators of wet and dry periods. Int J Speleol 36(2):69–74 (ISSN 0392-6672) CrossRefGoogle Scholar
  22. Fernandez-Cortes A, Cuezva S, Alvarez-Gallego M, Garcia-Anton E, Pla C, Benavente D, Jurado V, Saiz-Jimenez C, Sanchez-Moral S (2015) Subterranean atmospheres may act as daily methane sinks. Nat Commun 6:7003. doi:10.1038/ncomms8003 CrossRefGoogle Scholar
  23. Fierer N, Allen AS, Schimel JP, Holden PA (2003) Controls on microbial CO2 production: a comparison of surface and subsurface soil horizons. Glob Change Biol 9:1322–1332CrossRefGoogle Scholar
  24. Fisher RE, Sriskantharajah S, Lowry D, Lanoisellé M, Fowler CMR, James RH, Hermansen O, Lund Myhre C, Stohl A, Greinert J, Nisbet-Jones PBR, Mienert J, Nisbet EG (2011) Arctic methane sources: isotopic evidence for atmospheric input. Geophys Res Lett 38:L21803. doi:10.1029/2011GL049319 CrossRefGoogle Scholar
  25. Frank R (1971) The clastic sediments of the Wellington Caves. N S W Helictite 9(1):1–26Google Scholar
  26. Garcia-Anton E, Cuezva S, Jurado V, Porca E, Miler AZ, Fernandez-Cortes A, Saiz-Jiminez C, Sanchez-Moral S (2014) Combining stable isotope (δ13C) of trace gases and aerobiological data to monitor the entry and dispersion of microorganisms in caves. Environ Sci Pollut Res 21:473–484. doi:10.1007/s11356-013-1915-3 CrossRefGoogle Scholar
  27. Gleixner G (2007) Stable Isotope Composition of Soil Organic Matter. In: Flanagan LB, Ehleringer JR, Pataki DE (eds) Stable iotopes and biosphere-atmosphere interactions. Elsevier Academic Press, California, pp 47–68Google Scholar
  28. Grant NJ, Whiticar MJ (2002) Stable carbon isotopic evidence for methane oxidation in plumes above Hydrate Ridge, Cascadia Oregon Margin. Glob Biogeochem Cycles 16(4):1–13. doi:10.1029/2001GB001851 Google Scholar
  29. Houghton JT, Filho LGM, Callender BA, Harris N, Kattenberg A, Maskell K (1996) Climate change 1995: the science of climate change. Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 572Google Scholar
  30. Hutchens E, Radajewski S, Dumon MG, McDonald IR, Murrell JC (2004) Analysis of methanotrophic bacteria in Movile Cave by stable isotope probing. Environ Microbiol 6(2):11–120Google Scholar
  31. Iverach CP, Cendòn DI, Hankin SI, Lowry D, Fisher RE, France JL, Nisbet EG, Baker A, Kelly BFJ (2015) Assessing the connectivity between an overlying aquifer and a coal seam gas resource using methane isotopes, disolved organic carbon and tritium. Sci Rep 5:15996. doi:10.1038/srep/15996 CrossRefGoogle Scholar
  32. James EW, Banner JL, Hardt B (2015) A global model for cave ventilation and seasonal bias in speleothem paleoclimate records. Geochem Geophys Geosys 16(4):1044–1051. doi:10.1002/2014GC005658 CrossRefGoogle Scholar
  33. Jex CN, Mariethoz G, Baker A, Graham P, Andersen MS, Acworth I, Edwards N, Azcurra C (2012) Spatially dense drip hydrological monitoring and infiltration behaviour at the Wellington Caves, South East Australia. Int J Speleol 41(2):285–298CrossRefGoogle Scholar
  34. Kaplan JO, Folberth G, Hauglustaine DA (2006) Role of methane and biogenic volatile organic compound sources in late glacial and Holocene fluctuations of atmospheric methane concentrations. Global Biogeochem Cycles 20(2):1–16. doi:10.1029/2005GB002590 CrossRefGoogle Scholar
  35. Keeling CD (1958) The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas. Geochim Cosmochim Acta 13(4):322–334CrossRefGoogle Scholar
  36. Keeling CD (1961) The concentration and isotopic abundances of carbon dioxide in rural and marine air. Geochim Cosmochim Acta 24:277–298CrossRefGoogle Scholar
  37. Kelly BFJ, Iverach CP, Lowry D, Fisher RE, France JL, Nisbet EG (2015) Fugitive methane emissions from natural, urban, agricultural, and energy-production landscapes of eastern Australia. Geophys Res Abstr 17:EGU2015-5135Google Scholar
  38. Keshavarzi M, Graham P, Baker A, Kelly BFJ, Andersen M, Rau G, Ackworth RI, Smithson A (2014) Understanding river–groundwater interactions in a karst system, Wellington, NSW. Australian Earth Science Convention, CanberraGoogle Scholar
  39. Kirschke S, Bousquet P, Ciais P, Saunois M, Canadell JG, Dlugokencky EJ, Bergamaschi P, Bergmann D, Blake DR, Bruhwiler L, Cameron-Smith P, Castaldi S, Chevallier F, Feng L, Fraser A, Heimann M, Hodson EL, Houweling S, Josse B, Fraser PJ, Krummel PB, Lamarque J-F, Langenfelds RL, Le Quéré C, Naik V, O’Doherty S, Palmer PI, Pison I, Plummer D, Poulter B, Prinn RG, Rigby M, Ringeval B, Santini M, Schmidt M, Shindell DT, Simpson IJ, Spahni R, Steele LP, Strode SA, Sudo K, Szopa S, van der Werf GR, Voulgarakis A, van Weele M, Weiss RF, Williams JE, Zeng G (2013) Three decades of global methane sources and sinks. Nat Geosci 6:813–823CrossRefGoogle Scholar
  40. Kowalczk AJ, Froelich PN (2010) Cave air ventilation and CO2 outgassing by radon-222 modeling: how fast do caves breath? Earth Planet. Sci Lett 289:209–219Google Scholar
  41. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79(17):5112–5120CrossRefGoogle Scholar
  42. Kumaresan D, Wischer D, Stephenson J, Hillebrand-Voiculescu A, Murrell JC (2014) Microbiology of Movile Cave—a chemolithoautotrophic ecosystem. Geomicrobiol J 31:186–193CrossRefGoogle Scholar
  43. Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J (2000) Cellular energetics: glycolysis, aerobic oxidation, and photosynthesis. Molecular cell biology, 4th edn. W. H. Freeman and Co., New YorkGoogle Scholar
  44. Lueders T, Manefield M, Friedrich MW (2004) Enhanced sensitivity of DNA-and rRNA-based stable isotope probing by fractionation and quantitative analysis of isopycnic centrifugation gradients. Environ Microbiol 6:73–78CrossRefGoogle Scholar
  45. Mattey D, Latin J-P, Ainsworth M (2008) Cave monitoring and calibration of a δ18O—climate transfer function in Gibraltar. PAGES Newsl. 16(3):15–17Google Scholar
  46. Mattey DP, Fisher R, Atkinson TC, Latin J-P, Durrell R, Ainsworth M, Lowry D, Fairchild IJ (2013) Methane in underground air in Gibraltar karst. Earth Planet Sci Lett 374:71–80CrossRefGoogle Scholar
  47. Meyer KW, Feng W, Breecker DO, Banner JL, Guilfoyle A (2014) Interpretation of speleothem calcite δ13C variations: evidence from monitoring soil CO2, drip water, and modern speleothem calcite in central Texas. Geochim Cosmochim Acta 142:281–298CrossRefGoogle Scholar
  48. O’Leary MH (1981) Carbon isotope fractionation in plants. Phytochemistry 20(4):553–567CrossRefGoogle Scholar
  49. Osborne RAL (1981) Towards an air quality standard for tourist caves: studies of carbon dioxide enriched atmospheres in Gaden-Coral Cave, Wellington Caves, NSW. Helictite 19(2):48–56Google Scholar
  50. Osborne RAL (2001) Karst geology of Wellington Caves: a review. Helictite. 37(1):3–12Google Scholar
  51. Osborne RAL (2007) Cathedral Cave, Wellington Caves, New South Wales, Australia. A multiphase, non-fluvial cave. Earth Surf Process Landf 32:2075–2103CrossRefGoogle Scholar
  52. Pataki DE, Ehleringer JR, Flanagan LB, Yakir D, Bowling DR, Still CJ, Buchmann N, Kaplan JO, Berry JA (2003) The application and interpretation of Keeling plots in terrestrial carbon cycle research. Glob Biochem Cycles 17(1):22-1–22-14. doi:10.1029/2001GB00185 Google Scholar
  53. Rau GC, Cuthbert MO, Andersen MS, Baker A, Rutlidge H, Markowska M, Roshan H, Marjo CE, Graham PW, Acworth RI (2015) Controls on cave drip water temperature and implications for speleothem-based paleoclimate reconstructions. Quat Sci Rev 12:19–36CrossRefGoogle Scholar
  54. Rayleigh L (1896) Theoretical considerations respecting the separation of gases by diffusion and similar processes. Philos Mag Ser 5(42):493–498. doi:10.1080/14786449608620944 CrossRefGoogle Scholar
  55. Rutlidge H, Baker A, Marjo CE, Andersen MS, Graham PW, Cuthbert MO, Rau GC, Roshan H, Markowska M, Mariethoz G, Jex CN (2014) Dripwater organic matter and trace element geochemistry in a semi-arid karst environment: implications for speleothem palaeoclimatology. Geochim Cosmochim Acta 135:217–230CrossRefGoogle Scholar
  56. Saidi-Mehrabad A, He Z, Tamas I, Sharp CE, Brady AL, Rochman FF, Bodrossy L, Abell GC, Penner T, Dong X, Sensen CW, Dunfield PF (2013) Methanotrophic bacteria in oilsands tailings ponds of northern Alberta. ISME J 7:908–921CrossRefGoogle Scholar
  57. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing MOTHUR: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541CrossRefGoogle Scholar
  58. Schofield S, Jankowski J (2003) The hydrogeology of the Ballimore region, central New South Wales, Australia: an integrated study. Environ Geol 44(1):90–100Google Scholar
  59. Schofield S, Jankowski L (2004) Hydrochemistry and isotopic composition of Na–HCO3—rich groundwaters from the Ballimore region, central New South Wales, Australia. Chem Geol 211:111–134CrossRefGoogle Scholar
  60. Solomon SB, Langroo R, Peggie JR, Lyons RG, James JM (1996) Occupational exposure to radon in Australian tourist caves—an Australia-wide study of radon levels. Final report of Worksafe Australia Research Grant (93/0436). ISSN: 0157-1400Google Scholar
  61. Srikantharajah S, Fisher RE, Lowry D, Aalto T, Hatakka J, Aurela M, Laurila T, Lohila A, Kuitunen E, Nisbet EG (2012) Stable carbon isotope signatures of methane from a Finnish subarctic wetland. Tellus B 64:18818Google Scholar
  62. Strusz DL (1965) Disphyllidae and Phacellophyllidae from the Devonian Garra Formation of New South Wales. Palaeontology 8(3):518–571Google Scholar
  63. Suarez DL, Jurinak JJ (2011) The chemistry of salt-affected soils and waters. Agricultural salinity assessment and management, 2nd edn. American Society of Civil Engineers, Reston, pp 57–88CrossRefGoogle Scholar
  64. Troester JW, White WB (1984) Seasonal fluctuations in the carbon dioxide partial pressure in a cave atmosphere. Water Res Res 20:153–156CrossRefGoogle Scholar
  65. van Bergen PF, Nott CJ, Bull ID, Poulton PR, Evershed RP (1998) Organic geochemical studies of soils from the Rothamsted Classical Experiments—IV. Preliminary results from a study of the effect of soil pH on organic matter decay. Organ Geochem 29:1779–1795CrossRefGoogle Scholar
  66. Wainer K, Genty D, Blamart D, Daëron M, Bar-Matthews M, Vonhof H, Dublyansky Y, Pons-Branchu E, Thomas L, van Calsteren P, Yves Quinif, Caillon N (2010) Speleothem record of the last 180 ka in Villars cave (SW France): investigation of a large δ18O shift between MIS6 and MIS5. Quat Sci Rev 30(1–2):130–146Google Scholar
  67. Waring CL, Griffith DWT, Wilson S, Hurry S (2009) Cave atmosphere: a guide to calcification and a methane sink. Geochim Cosmochim Acta 73:A1419–A1419Google Scholar
  68. Whiticar MJ (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol 161:291–314CrossRefGoogle Scholar
  69. Wilkins D, Van Sebille E, Rintoul SR, Lauro FM, Cavicchioli R (2013) Advection shapes Southern Ocean microbial assemblages independent of distance and environmental effects. Nat Commun 4:2457CrossRefGoogle Scholar
  70. Winfrey MR, Nelson DR, Klevickis SC, Zeikus JG (1977) Association of hydrogen metabolism with methanogenesis in Lake Mendota sediments. Appl Environ Microbiol 33:312–318Google Scholar
  71. Wolfram Research, Inc (2012) Mathematica, Version 9.0. Champaign, ILGoogle Scholar
  72. Wong C, Banner JL, Musgrove M (2011) Seasonal dripwater Mg/Ca and Sr/Ca variations driven by cave ventilation: implications for and modeling of speleothem paleoclimate records. Geochim Cosmochim Acta 75:3514–3529CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • L. K. McDonough
    • 1
    • 2
  • C. P. Iverach
    • 2
  • S. Beckmann
    • 3
  • M. Manefield
    • 3
    • 4
  • G. C. Rau
    • 2
  • A. Baker
    • 2
  • B. F. J. Kelly
    • 2
  1. 1.School of Biological, Earth and Environmental SciencesUNSW AustraliaSydneyAustralia
  2. 2.Connected Waters Initiative Research CentreUNSW AustraliaSydneyAustralia
  3. 3.School of Biotechnology and Biomolecular SciencesUNSW AustraliaSydneyAustralia
  4. 4.Urban Water System EngineeringTUMMunichGermany

Personalised recommendations