Advertisement

The relationship between the landslide frequency and hydrogeological aspects: a case study from a hilly region in Northern Bavaria (Germany)

  • Johannes WiedenmannEmail author
  • Joachim Rohn
  • Michael Moser
Original Article

Abstract

LIDAR data and other data-bases such as geological maps, topographical maps, and orthophotos were used to build a landslide inventory of more than 1000 landslides in a study area of about 1590 km2. All landslides were tested particularly during extensive field investigations. Analysis of the landslide inventory reveals a high dependency between the spatial ratio of the landslides and the lithological setting in the study area, as almost two-thirds of all objects are tied to one lithological setting: ‘hard rock overlying alterable rock’. This condition is fulfilled in three different combinations of geological formations (geological settings). The analysis of the degree of landslide frequency along the borders (‘linear ratio’) between the involved formations shows that there is a big difference in their susceptibility to landslides. The present study attempts to reveal the basic relationship between the hydrological context of the study area and the observed susceptibility to landslides of the three different geological settings. Therefore, calculated groundwater discharges, observed springs within the mapped landslides, calculated mean infiltration area for groundwater generation, and annual precipitation were included into a more detailed consideration. A comparison of the gathered results indicates that there is a strong connection between these different features in the study area.

Keywords

Landslides Ground truth Hydrogeological aspects Bavaria 

Notes

Acknowledgments

This study is based on data gathered within the EU-project ‘Europäischer Fonds für regionale Entwicklung (EFRE) im Ziel ‘Regionale Wettbewerbsfähigkeit und Beschäftigung’ Bayern 2007–2013; Projekt: Georisiken im Klimawandel—Gefahrenhinweiskarte Jura, 1.5-StMUG-83-OFR-001’, which was financed by the Bavarian Environment Agency (Bayerisches Landesamt für Umwelt, LfU). The employees of LfU, as the coordinator of this project, are thanked for giving helpful advices during field investigations and for providing a variety of base-data for this research.

References

  1. Bayerisches Landesamt für Umwelt. (2011a). Klimaanpassung und Georisiken. http://www.lfu.bayern.de/klima/klimaanpassung/bayern/georisiken/index.htm. Accessed 18 Nov 2015
  2. Bayerisches Landesamt für Umwelt. (2011b). Mittlerer jährlicher Niederschlag in Bayern, Periode 1971–2000—Karten zur Wasserwirtschaft 1:1 250 000. http://www.bestellen.bayern.de/application/applstarter?APPL=STMUG&DIR=stmug&ACTIONxSETVAL(artdtl.htm,APGxNODENR:283761,AARTxNR:lfu_was_00063,USERxBODYURL:artdtl.htm,KATALOG:StMUG,AKATxNAME:StMUG,ALLE:x)=X. Accessed 18 Nov 2015
  3. Bièvre G, Jongmans D, Winiarski T, Zumbo V (2012) Application of geophysical measurements for assessing the role of fissures in water infiltration within a clay landslide (Trièves area, French alps). Hydrol Process 26(14):2128–2142CrossRefGoogle Scholar
  4. Bittelli M, Valentino R, Salvatorelli F, Rossi Pisa P (2012) Monitoring soil-water and displacement conditions leading to landslide occurrence in partially saturated clays. Geomorphology 173–174:161–173CrossRefGoogle Scholar
  5. Bloos G, Dietl G, Schweigert G (2005) Der Jura Süddeutschlands in der Stratigraphischen Tabelle von Deutschland 2002: Formationen und Folgen. Newsl Stratigr 41(1/3):263–277CrossRefGoogle Scholar
  6. Corominas J, Moya J, Ledesma A, Lloret A, Gili JA (2005) Prediction of ground displacements and velocities from groundwater level changes at the Vallcebre landslide (Eastern Pyrenees, Spain). Landslides 2(2):83–96CrossRefGoogle Scholar
  7. Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Special Report. Transportation Research Board, National Research Council, Washington, DC, United States, pp 36–75Google Scholar
  8. Hammer H (1985) Systematische ingenieurgeologische Untersuchung von Hangrutschungen im Nordbayerischen Deckgebirge. Veröffentlichungen des Grundbauinst der Landesgewe Bayern 42:103Google Scholar
  9. Hiss M, Mutterlose J, Niebuhr B, Schwerd K (2005) Die Kreide in der Stratigraphischen Tabelle von Deutschland 2002. Newsl Stratigr 41(1/3):287–306CrossRefGoogle Scholar
  10. Jäger D, Sandmeier C, Schwindt D, Terhorst B (2013) Geomorphological and geophysical analyses in a landslide area near Ebermannstadt, Northern Bavaria. E&G Quat Sci J 62(2):150–161Google Scholar
  11. Krzeminska DM, Bogaard TA, van Asch T, van Beek L (2012) A conceptual model of the hydrological influence of fissures on landslide activity. Hydrol Earth Syst Sci 16(6):1561–1576CrossRefGoogle Scholar
  12. Martins-Campina B, Huneau F, Fabre R (2008) The Eaux-Bonnes landslide (Western Pyrenees, France): overview of possible triggering factors with emphasis on the role of groundwater. Environ Geol 55(2):397–404CrossRefGoogle Scholar
  13. Müller KW (1957) Der Bergrutsch von Ebermannstadt (Fränk. Alb) vom 18–19. February 1957. Geol Bl Nord Bayern Angrenz Geb 7(3):119–125Google Scholar
  14. Nitsch E (2005) Der Keuper in der Stratigraphischen Tabelle von Deutschland 2002: formationen und Folgen. Newsl Stratigr 41(1/3):159–171CrossRefGoogle Scholar
  15. Petley DN, Mantovani F, Bulmer MH, Zannoni A (2005) The use of surface monitoring data for the interpretation of landslide movement patterns. Geomorphology 66(1–4):133–147CrossRefGoogle Scholar
  16. Rentschler K, Moser M, Eigenfeld F (1999) Die Erfassung von Inhomogenitäten und Instabilitäten an Tonsteinhängen Süddeutschlands. Selbstverl. FB Geowiss. der Univ, HalleGoogle Scholar
  17. Ronchetti F, Borgatti L, Cervi F, Gorgoni C, Piccinini L, Vincenzi V, Corsini A (2009) Groundwater processes in a complex landslide, northern Apennines, Italy. Nat Hazards Earth Syst Sci 9(3):895–904CrossRefGoogle Scholar
  18. Schulz WH, Lidke DJ, Godt JW (2008) Modeling the spatial distribution of landslide-prone colluvium and shallow groundwater on hillslopes of Seattle, WA. Earth Surf Process Landf 33(1):123–141CrossRefGoogle Scholar
  19. Zeiss A (1977) Jurassic stratigraphy of Franconia. Stuttg Beitr Nat Ser B 31:1–32Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Johannes Wiedenmann
    • 1
    Email author
  • Joachim Rohn
    • 1
  • Michael Moser
    • 1
  1. 1.Department of Applied Geology, GeoZentrum NordbayernUniversity of Erlangen-NürnbergErlangenGermany

Personalised recommendations