Assessment of groundwater quality for irrigation and drinking purposes and identification of hydrogeochemical mechanisms evolution in Northeastern, Tunisia

  • Faten Houatmia
  • Rim Azouzi
  • Abdelkrim Charef
  • Mourad Bédir
Original Article


Oligocene and Mio-Plio-Quaternary siliciclastic deposits constitute the most important deep aquifers of the Kairouanai-Sahel region. Considering the over-exploitation and contamination of the surface groundwater, recourse to use deep groundwater was crucial. These aquifers revealed three major hydrochemical facies: HCO3/Mg, HCO3/Na and SO4/Mg water types. Rock–water interaction showed the main mechanisms are rock weathering and evaporation. Different parameters such as water quality index (WQI), sodium absorption ratio (SAR), percentage of sodium, residual sodium carbonate (RSC), magnesium hazard (MH) and permeability index (PI) were used to evaluate groundwater suitability for drinking and irrigation purposes. Results highlighted that groundwater is unsafe for irrigation based on PI, MH, RSC and salinity diagram. According to the WQI values, 10.25 % of the water samples had good water quality, 69.23 % were considered as poor water, 12.82 % were very poor water and 7.69 % were considered unsuitable for drinking purpose.


Physico-chemical analysis Hydrogeochemistry Drinking and irrigation quality Sisseb El Alem aquifers 



This work is a part of the results of the research Project—2002–2014—of “Deep Aquifers in Eastern Tunisia Sahel regions” of the Georesource Laboratory in the Centre of Water Researches and Technology of the Borj Cédia Technopark in collaboration with the “Direction Générale des Ressources en Eaux” of the Agriculture Ministry and financed by the Ministry of Higher education and scientific research of Tunisia.

We would like to express our gratitude and thanks to the technicians and engineers staff of Kairouan and Sidi Bouzid water resources regional departments, and also to the researchers and staff members of Georesource and waste water treatment laboratories, for their help and assistance, during the field survey and laboratory analysis.


  1. Adrian H, Gallardo A, Norio T (2007) Hydrogeology and geochemical characterization of groundwater in a typical small scale agricultural area of Japan. J Asian Earth Sci 29:18–28CrossRefGoogle Scholar
  2. Al-hadithi M (2012) Application of water quality index to assess suitability of groundwater quality for drinking purposes in Ratmao–Pathri Rao watershed Haridwar District, India Mufid. Am J Sci Ind Res. doi: 10.5251/ajsir.2012.3.6.395.402 Google Scholar
  3. Aly AA, Al-Omran AM, Alharby MM (2014) The water quality index and hydrochemical characterization of groundwater resources in Hafar Albatin, Saudi Arabia. Arab J Geosci. doi: 10.1007/s12517-014-1463-2 Google Scholar
  4. Arumugam K, Elangovan K (2009) Hydrochemical characteristics and groundwater quality assessment in Tirupur Region, Coimbatore District, Tamil Nadu, India. Environ Geol 58:1509–1520CrossRefGoogle Scholar
  5. Bédir M (1985) Dynamique des basins sédimentaires cénozoïques du Sahel de Mahdia d’après les données de surface et de sub-surface: sismo-stratigraphie, évolution tectonique et sédimentologie. Mémoire de D.E.A Fac.desSci. Tunis, p 127Google Scholar
  6. Bédir M (1988) Géodynamique des bassins sédimentaires du Sahel de Mahdia (Tunisie orientale), de l’Aptien à l’actuel: Sismostratigraphie, sismotectoniqueet structurale. Répercussions pétrolières, hydrologiques et sismiques. Thèse doctorat de 3ème cycle, Université de Tunis El Manar II, Faculté des Sciences de Tunis, p 242Google Scholar
  7. Bédir M, Lachaal F, Chebbi R, Gharsalli R, Khomsi S, Zouaghi T, Soussi M (2012) Geophysic and Geologic Deep Water Reservoir Characterisation and Evaluation in Eastern Tunisia. American Water Resource Association Conference, 12–15 November, Jacksonville, Florida, USAGoogle Scholar
  8. Bel Hadj Salem S, BenMoussa A, Chkir N, Zouari K, Cognard-Plancq AL, Marc V, Valles V (2014) Geochemical and isotopic investigation of groundwater mineralization process in the Zeroud basin, centralTunisia. Carbonates Evaporites 26:301–315. doi: 10.1007/s13146-011-0058-1 CrossRefGoogle Scholar
  9. Ben Alaya M, Saidi S, Zemni T, Zargouni F (2014) Suitability assessment of deep groundwater for drinking and irrigation use in the Djeffara aquifers (NorthernGabes,south-easternTunisia). Environ Earth Sci 71:3387–3421. doi: 10.1007/s12665-013-2729-9 CrossRefGoogle Scholar
  10. Boujamaoui M (2000) Stratigraphie séquentielle et sismique des faciè s du Miocène de la Tunisie nord- orientale, compilations de données sismiques, diagraphiques et sédimentologiques. Thèse, Université de Tunis-II, p 201Google Scholar
  11. Boujamaoui M, Inoubli MH (1999a) Stratigraphie sismique et séquentielle du Miocène de la Tunisie nord- orientale. 15ème Colloque des bassins Sédimentaires Marocains, Oujda 27–29 Avril, p 1Google Scholar
  12. Boujamaoui M, Inoubli MH (1999b) Exemple de cortège sédimentaire de bas niveau marindeltaique de plate forme. Cas du Miocène moyen de la Tunisie atlasique. Réunion Annuelle conjointe (Asso. Géol. du Canada et Asso. Miné. Du Canada) Sudbury (Ontario), 26–28 Mai, p 1Google Scholar
  13. Boujamaoui M, Saadi M, Inoubli MH, Turki MM (1997a) Géométrie et contrôle eustatiques des séries siliciclastiques du Miocène moyen en Tunisie et dans le bloc pélagien.-Peri-Téthys Programme, annual Meeting, Rabat, Morocco, 1012 June (résumé), p 1Google Scholar
  14. Boujamaoui M, Saadi M, Inoubli MH, Turki MM (1997b) Séquence de dépôt du Miocène Moyen en Tunisie nord-orientale et dans le bloc Pélagien, géométrie et contrôle eustatique.- Les marges Téthysiennes d’Afrique du nord, Paris, p 1Google Scholar
  15. Brindha K, Elango L (2012) Impact of tanning industries on groundwater quality near a metropolitan city in India. Water Resour Manag 26:1747–1761CrossRefGoogle Scholar
  16. Cardenal J, Benavente J, Cruz-Sanjulián J (1994) Chemical evolution of groundwater in Triassic gypsum bearing carbonate aquifers. Las Alpujarras, southern Spain. J Hydrol 161:3–30CrossRefGoogle Scholar
  17. Chihi L (1995) Les fossées Néogènes à quaternaires de la Tunisie et de la mer pélagienne: leur signification dans le cadre géodynamique de la Méditerranée centrale. Thèse de Doct. d’Etat, Université Tunis El Manar II, Fac. Des Tunis, 324p + annexesGoogle Scholar
  18. Chung SY, Ramkumar T, Venkatramanan S, Kim TH, Kim DS (2014) Influence of hydrogeochemical processes and assessment of suitability for groundwater uses in Busan City, Korea. Environ Dev Sustain. doi: 10.1007/s10668-014-9552-7 Google Scholar
  19. Clement A, Fritz B, Made B (1994) Thermodynamic and kinetic modeling of digenetic reactions in sedimentary basins. Description of the geochemical Code KINDISP. French Inst Petrol 49:569–602Google Scholar
  20. Datta PS, Tyagi SK (1996) Major ion chemistry of groundwater in Delhi area: chemical weathering processes and groundwater flow regime. J Geol Soc India 47:179–188Google Scholar
  21. Delteil J, Turki MM (1986) Les structures méridionales des chaines alpiness de l’Atlas oriental. Déformationtransformante en compression (Tunisie et Algérie orientale). Bull. Centre de rech. Expl. Prod. Elf-Aquitaine, 10, 2, pp 245–258Google Scholar
  22. Deshpande SM, Ather KR (2012) Evaluation of groundwater quality and its suitability for drinking and agriculture use in parts of Vaijapur, District Aurangabad, MS, India. Res J Chem Sci 2(1):25–31Google Scholar
  23. Doneen LD (1964) Notes on water quality in Agriculture.Published as a Water Science and Engineering, Paper 4001, Department of Water Sciences and Engineering, University of CaliforniaGoogle Scholar
  24. Durvey VS, Sharma LL, Saini VP, Sharma BK (1991) Handbook on the methodology of water quality assessment. Rajasthan Agriculture University, IndiaGoogle Scholar
  25. Ellouze N (1984) Etude de la subsidence de la Tunisie atlasique orientale et de la mer pélagienne. Thèse de Doctorat 3ème cycle. Sciences de la terre Géodynamique, Université Paris VI, 1984, p 129Google Scholar
  26. Feth JH, Gibbs RJ (1971) Mechanisms controlling world water chemistry: evaporation–crystallization process. Science 172(3985):870–872CrossRefGoogle Scholar
  27. Gaaloul N (1995) Les environnements siliciclastiques du Néogène du Sahel de la Tunisie: palynologie etbiosédimentologie. Thèse de Doctorat 3ème cycle. Université de Tunis El Manar, Tunis, p 256Google Scholar
  28. Gabtni H, Alyahyaoui S, Jallouli C, Hasni W, Mickus KL (2012) Gravity and seismic reflection imaging of a deep aquifer in an arid region. Case history from the Jeffara basin, southeastern Tunisia. J Afr Earth Sc 66–67:85–97CrossRefGoogle Scholar
  29. Gibbs RJ (1970) Mechanism controlling water world chemistry. Science 170:1088–1090CrossRefGoogle Scholar
  30. Gunduz O, Simsek C, Hasozbek A (2009) Arsenic pollution in the groundwater of Simav Plain, Turkey: its impact on water quality and human health. Water Air Soil Pollut 205:43–62CrossRefGoogle Scholar
  31. Gupta S, Kumar A, Ojha CK, Singh G (2004) Assessment of Water Quality Index for the Groundwater in Tumkur Taluk, Karnataka State, India. J Environ Sci Eng 46(1):74–78Google Scholar
  32. Gupta S, Mahato A, Roy P, Datta JK, Saha RN (2008) Geochemistry of groundwater, Burdwan district, West Bengal, India. Environ Geol 53:1271–1282. doi: 10.1007/s00254-007-0725-7 CrossRefGoogle Scholar
  33. Hamed Y, Awed S, Ben Saad A (2013) Nitrate contamination in groundwater in the SidiAich-Gafsa oases region, southern Tunisia. Environ Earth Sci 70:2335–2348. doi: 10.1007/s12665-013-2445-5 CrossRefGoogle Scholar
  34. Hem JD (1985) Study and interpretation of the chemical character istics of natural water, 3rd edn. Scientific Publishers, Jodhpur, p 225Google Scholar
  35. Hem JD (1991) Study and interpretation of the chemical character-istics of natural waters. Book 2254, 3rd edn. Scientific Publishers, JodhpurGoogle Scholar
  36. Hem JD (1992) Study and interpretation of chemical characteristics of natural water, 3rd edn. USGS Water Supply Paper 2254Google Scholar
  37. Horton RK (1965) An index number system for rating water quality. J Water Pollut Control Fed 37:300–305Google Scholar
  38. Houatmia F, Khomsi S, Malayah A, Andolssi M, Bedir M (2014) Neogene aquifer: geochemistry and structuring in the SidiSaad basin, central Tunisia. Arab J Geosci. doi: 10.1007/s12517-014-1433-8 Google Scholar
  39. Hounslow AW (1995) Water quality data: analysis and interpretation. CRC/Lewis, WashingtonGoogle Scholar
  40. Hull LC (1984) Geochemistry of ground-water in the Sacramento valley, CA. US Geol. Surv. Prof. Paper 1401-BGoogle Scholar
  41. Jamoussi F (2001) Les argiles de Tunisie: Etude minéralogique, géochimique, géotechnique et utilisations industrielles. Thèse Doctorat Es-Sciences:Université Tunis El Manar. Faculté des sciences. Tunis, p 437Google Scholar
  42. Jayakumar R, Siraz L (1997) Factor analysis in hydrochemistry of coastal aquifers—a preliminary study. Environ Geol 31:3–4CrossRefGoogle Scholar
  43. Jeddi RS (1993) Dynamique des environnements marginaux et continentaux au cours du Miocène inférieur et moyen en Tunisie atlasique centrale. Thèse, Université de Pau, p 360Google Scholar
  44. Joliffe IT (1986) Principal component analysis. Springer, BerlinGoogle Scholar
  45. Kacem A, Daoud A, Zouari K (2008) Le bassin de Sisseb El Alem (Kairouanais, Tunisie centrale): importance, caractéristiques des aquifères et éléments pour une meilleure gestion. Sécheresse 19(1):55–60Google Scholar
  46. Kelly WP (1963) Use of Saline Irrigation Water. Soil Sci 95(4):355–391Google Scholar
  47. Ketata-Rokbani M, Gueddari M, Bouhlila R (2011) Use of geographical information system and water quality index to assess groundwater quality in El Khairat Deep quifer (Enfidha, Tunisian Sahel). Iran J Energy Environ 2(2):133–144Google Scholar
  48. Khomsi S, Echihi O, Slimani N (2012) Structural control on the deep hydrogeological and geothermal aquifers related to the fractured Campanian-Miocene reservoirs of north-eastern Tunisia foreland constrained by subsurface data. Comptes Rendus Geoscience, p 19Google Scholar
  49. Khomsi S, Bédir M, Ben Jemia MG, Zouari H (2004) Mise en évidence et analyse d’une structure atlasique ennoyée au front de la chaine alpine tunisienne. Comptes Rendu Geoscience 336:1293–130CrossRefGoogle Scholar
  50. Kumar M, Kumari K, Ramanathan AL, Saxena R (2007) A comparative evaluation of groundwater suitability for irrigation and drinking purposes in two intensively cultivated districts of Punjab, India. Environ Geol 53(3):553–574. doi: 10.1007/s00254-007-0672-3 CrossRefGoogle Scholar
  51. Kraiem Z, Zouari K, Chkir N, Agoune A (2013) Geochemical characteristics of arid shallow aquifers in Chott Djerid, south-western Tunisia. J Hydro-environ Res. doi: 10.1016/j.jher.2013.06.002 Google Scholar
  52. Laajili I (2014) Evaluation de l’impact des ouvrages de CES sur la recharge de la nappe Oligocène et Mio-Plio- Quaternaire de NadhourSaouaf—Sisseb El Alem. Mémoire de mastère, p 107Google Scholar
  53. Lachaal F, Bédir M, Tarhouni J, Ben Gacha A, Leduc C (2011) Characterizing a complex aquifer system using geophysics, hydro-dynamics and geochemistry: a new distribution of Miocene aquifers in the Zéramdine and Mahdia-Jébéniana blocks (east-central Tunisia). J Afr Earth Sci 60:222–236CrossRefGoogle Scholar
  54. Lachaal F, Gabtni H, Bédir M, Tarhouni J (2012) Seismic, gravity, and wire line logging characterization of the Zéramdine fault corridor and its influence in the deep Miocene aquifers distribution (east-central Tunisia). Arab J Geosci 5:1391–1398. doi: 10.1007/s12517-011-0298-3 CrossRefGoogle Scholar
  55. Lateef KH (2011) Evaluation of groundwater quality for drinking purpose for Tikrit and Samarra cities using water quality index. Eur J Sci Res 58(4):472–481Google Scholar
  56. Lawrence FW, Upchurch SB (1982) Identification of recharge areas using geochemical factor analysis. Ground Water 20:680–687CrossRefGoogle Scholar
  57. Mamatha P, Rao SM (2009) Geochemistry of fluoride rich ground-water in Kolar and Tumkur Districts of Karnataka. Environ Earth Sci 61:131–142CrossRefGoogle Scholar
  58. Mamatha P, Sudhakar MR (2010) Geochemistry of fluoride rich groundwater in Kolar and Tumkur Districts of Karnataka. Environ EarthSci 61(1):131–142CrossRefGoogle Scholar
  59. Mathhess G (1982) The properties of ground water (1sted). Wiley, New yorkGoogle Scholar
  60. Méon H, Tayech B (1986) Etude palynologique dans le Miocène du Cap Bon (Tunisie). Essai d’établissement d’écozones et reconstitution paléogéographique. Geobios 19:601–626CrossRefGoogle Scholar
  61. Mitra BK, Sasaki C, Enari K, Matsuyama N (2007) Suitability assessment of shallow groundwater for irrigation in Sand Dune area of Northwest Honshu Island, Japan. Int J Agric Res 2(6):518–527CrossRefGoogle Scholar
  62. Mohan R, Singh AK, Tripathi JK, Chowdhary GC (2000) Hydrochemistry and quality assessment of ground water in Naini Industrial area, Allahabad District, Uttar Pradesh. J Geol Soc India 55:77–89Google Scholar
  63. Pierre D, Glynn L, Plummer N (2005) Geochemistry and the understanding of groundwater systems. Hydrogeol J 13:263–287CrossRefGoogle Scholar
  64. Piper AM (1944) A graphic procedure in the geochemical interpretation of water analyses.EOS Trans. Am Geophys Union 25:914–923CrossRefGoogle Scholar
  65. Ragunath HM (1987) Groundwater, 2nd edn. Wiley Eastern Ltd, New DelhiGoogle Scholar
  66. Rajmohan N, Elango L (2004) Identification and evolution of hydrogeochemical processes in the groundwater environment in an area of the Palar and Cheyyar River Basins, Southern India. Environ Geol 46:47–61Google Scholar
  67. Raju NJ (2007) Hydrogeochemical parameters for assessment of groundwater quality in the upper Gunjanaeru River basin, Cuddapah District, Andhra Pradesh, South India. Environ Geol 52:1067–1074. doi: 10.1007/s00254-006-0546-0 CrossRefGoogle Scholar
  68. Ramakrishanaiah CR, Ranganna G, Sadashivaiah C (2009) Assessment of Water Quality Index for the Groundwater in TumkurTaluk, Karnataka State, India. E J Chem 6(2):523–530CrossRefGoogle Scholar
  69. Rao NS, Rao JP, Devadas DJ, Rao KV, Krishna C, Rao BN (2002) Hydrochemistry and groundwater quality in developing urban environment of a semi-arid region, Guntur, Andhra Pradesh. J Geol Soc India 59:159–166Google Scholar
  70. Richards LA (1954) Diagnosis and improvement of saline and alkali soils; Agri. Hand book 60, US Dept. of Agriculture, Washington, DC, 160Google Scholar
  71. Rodier L (1984) Analyse de l’eau: eaux naturelles, eaux résiduaire, eau de mer 8 ème édition. Dunot, Paris, p 1383Google Scholar
  72. Saadi M (1992) Géodynamique du bassin Tertiaire de Nabhana. Etude sédimentologique et structurale (Tunisie centro-orientale). DEA, Université Tunis El Manar II, Faculté des Sciences, p 118Google Scholar
  73. Saadi M (1997) Géodynamique des bassins sur relais de décrochement au Crétacé- Cénozoiqueet géométrie des séquences génétiques du bassin Oligo-Aquitanien de Saouaf, Tunisie centro-orientale. Thèse de Doctorat 3ème cycle. Université Tunis El Manar II, Faculté des Sciences, p 348Google Scholar
  74. Santosh MA, Shrihari S (2008) Evaluation of water quality index for drinking purposes for river Natravathi, Mangalore, South India. Environ Monit Assess 143:279–290CrossRefGoogle Scholar
  75. Sawyer C, Mc Carthy P (1967) Chemical and sanitary engineering, 2nd edn. McGraw-Hill, New YorkGoogle Scholar
  76. Schoeller H (1965) Hydrodynamique dans le karst Hydrodynamics of karst. Actes du Colloques de Doubronik. IAHS/UNESCO, Wallingford, pp 3–20Google Scholar
  77. Schoeller H (1967) Geochemistry of groundwater. An international guide for research and practice. UNESCO 15, 1–18, ChapGoogle Scholar
  78. Setegue-Tunisie, 2004. Etude des possibilités d’amélioration des conditions de recharge du complexe aquifère de Sisseb El Alem (gouvernorat de Kairouan). Rapports d’étude phases 1 et 2. République Tunisienne Ministère de l’Agriculture, de l’Environnement et des Ressources Hydrauliques. Direction Générale des Ressources en Eau. Groupe g.e.d. réf. 01/003Google Scholar
  79. Sindhu SK, Sharma A (2007) Study on some physico-chemical characteristics of ground water of district Rampur—a statistical approach. E J Chem 4(2):162–165CrossRefGoogle Scholar
  80. Singh AK, Hasnain S (1999) Environmental geochemistry of Damodar river basin East coast of India. Environ Geol 37(1):124–136CrossRefGoogle Scholar
  81. Singh LM, Roy PK, Roy AK, Anand R (1994) Application of remote sensing and GIS in hydrogeological investigation of Imphal valley. In: Proceeings National Symposium. Remote Sensing Application for Resource Management with special emphasis on NE Region, Guwahati, 25–27 Nov 1993, pp 143–147Google Scholar
  82. Srinivasamoorthy K, Gopinath M, Chidambaram S, Vasanthavigar M, Sarma VS (2014) Hydrochemical characterization and quality appraisal of groundwater from Pungar sub basin, Tamilnadu, India. J King Saud Univer Sci 26:37–52CrossRefGoogle Scholar
  83. Stetzenbach KJ, Farnham IM, Hodge VF, Johannesson KH (1999) Using multivariate statistical analysis of groundwater major cation and trace element concentrations to evaluate groundwater flow in a regional aquifer. Hydrol Process 13:2655–2697CrossRefGoogle Scholar
  84. Stetzenbach KJ, Hodge VF, Farnham IM, Guo C, Johannesson KH (2001) Geochemical and statistical evidence of deep carbonate groundwater within overlying volcanic rock aquifers/aquitards of southern Nevada, USA. J Hydrol 243:254–271CrossRefGoogle Scholar
  85. Subramani T, Elango L, Damodarasamy SR (2005) Groundwater quality and its suitability for drinking and agricultural use Chithar River Basin, Tamilnadu, India. Environ Geol 47:1099–1110CrossRefGoogle Scholar
  86. Szabolcs I, Darab C (1964) The influence of irrigation water of high sodium carbonate content of soils. In: Proceedings of 8th international congress of ISSS, transmission, vol 2. pp 803–812Google Scholar
  87. Tiwari TN, Mishra M (1985) A preliminary assignment of water quality index to major Indian rivers. IJEP 5(4):276–279Google Scholar
  88. Todd DK (1980) Ground water hydrology, 2nd edn. Wiley, New York, p 535Google Scholar
  89. Turki M (1985) Polycinématique et contrôle sédimentaire associé sur la cicatrice Zaghouan-Nebhana. 2ème sujet témoignages de déformations synsédirnentairesprétectoniques (Trias- Crétacé) en Tunisie. Thèse ès Sciences, Université Tunis El Manar II, p 252Google Scholar
  90. Uliana MM, Sharp JJM (2001) Tracing regional flow paths to major springs in trans-pecos Texas using geochemical data and geochemical models. Chem Geol 179:53–72CrossRefGoogle Scholar
  91. USSL (1954) Diagnosis and Improvement of Saline and Alkali Soils. United States Development Agency Handbook 60. Government Printing Office, Washington, DC, p 147Google Scholar
  92. WHO (2003) Hardness in drinking-water. Geneva, p 4Google Scholar
  93. WHO (2004) Guidelines for drinking water quality V.1 Recommendations. Switzerland, Geneva, p 130Google Scholar
  94. WHO (2011) Guidelines for drinking-water quality, 4th edn, p 564Google Scholar
  95. WHO (2014) World Health statistics, World Health Organization, p 117Google Scholar
  96. Wilcox LV (1955) Classification and Use of Irrigation Water. USDAGoogle Scholar
  97. Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemometr Intell Lab Syst 2:37–52CrossRefGoogle Scholar
  98. Xing L, Guo H, Zhan Y (2013) Groundwater hydrochemical characteristics and processes along flow paths in the North China Plain. J Asian Earth Sci 70–71(2013):250–264CrossRefGoogle Scholar
  99. Yaich C (1992) Dynamic des faciès détritiques oligo- miocènes de Tunisie. J Afr Earth Sci 15(1):35–47CrossRefGoogle Scholar
  100. Yaich C (1997) Dynamique sédimentaire, Eustatisme et Tectonique durant l’Oligo-Miocene en Tunisie. Formations Fortuna, Messiouta et Grijima; Numedien et Gréso-Micacé. Thèse ès Sciences, Université Tunis II, Tunisie, p 479Google Scholar
  101. Yaich C, Ben Ismail-Lattrache K, Turki-Zaghbib D, Turki MM (1994) Interprétation séquentielle de l’Oligo-Miocène (Tunisie central et nord orientale). Bull. Soc Géol Du Nord 47:27–49Google Scholar
  102. Yidana SM, Yidana A (2010) Assessing water quality index and multivariate analysis. Environ Earth Sci 59:1461–1473CrossRefGoogle Scholar
  103. Zahid A, Hassan MQ, Balke KD, Flegr M, Clark DW (2008) Groundwater chemistry and occurrence of arsenic in the Meghna flood plain aquifer, southeastern Bangladesh. Environ Geol 54:1247–1260CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Faten Houatmia
    • 1
  • Rim Azouzi
    • 1
  • Abdelkrim Charef
    • 1
  • Mourad Bédir
    • 1
  1. 1.Georesources LaboratoryCERTE-University ElmanarSolimanTunisia

Personalised recommendations