Advertisement

Protected areas may not effectively support conservation of endangered forest plants under climate change

  • Chun-Jing Wang
  • Ji-Zhong Wan
  • Gang-Min Zhang
  • Zhi-Xiang Zhang
  • Jing Zhang
Original Article

Abstract

Protected areas (PAs) play an important role in the conservation of valuable forest resources, and an increasing number of areas are being designated as PAs worldwide. However, climate change could drive endangered forest plants out of PAs, and impact the function of PAs to conserve endangered forest plants. Hence, it is necessary for conservation biologists to put forward a simple method to evaluate the ability of PAs to conserve endangered forest plants. Here, we studied 61 endangered forest plants from three ecoregions in China. We applied species distribution modeling to project suitable habitats of endangered forest plants, and used geographical information system to compute whether PAs could support the conservation of endangered forest plants. With climate change caused by increasing gas concentration, the overall ability of PAs to support the conservation of endangered forest plants will likely decrease compared to the conservation needs of ecoregions. We found that PAs have varying abilities to conserve endangered forest plants in different ecoregions. For temperate broadleaf mixed forests and tropical and subtropical moist broadleaf forests, we found that climate change will decrease the PAs’ ability to support the conservation of endangered forest plants effectively in the existing forest landscape. In contrast, we found that temperate conifer forests will likely remain effective. Using this information, we proposed the conservation plans for different ecoregions under climate change. For PAs with limited ability to support the conservation of endangered forest plants in an ecoregion, we recommend expanding the areas of forests and PAs based on the suitable habitats of the endangered forest plants. For PAs with stable ability to support the conservation of endangered forest plants in an ecoregion, we recommend expanding the conservation areas in PAs.

Keywords

Conservation area Forest plant species Climate change Forest landscape Maxent Ecoregion China 

Notes

Acknowledgments

This research was supported by the project entrusted to the Protection Division under the State Forestry Bureau, “Investigation and in situ conservation of Pyrus hopeiensis, the plant species with extremely small populations” (2) and the Fundamental Research Funds for the Central Universities (BLYJ201501). We thank the following National Nature Reserves for the use of their species data: Banqiao, Gujingyuan, Qingliangfeng, Songshan, Daiyunshan, E’meifeng, Longqishan, Minjianghekoushidi, Minjiangyuan, Tingjiangyuan, Xiongjianghuangchulin, Zhangjiangkouhongshulinshidi, Gansulianhuashan, Qinzhouzhenxishuishengyeshengdongwu, Taizishan, Yuhe, Haifengniaolei, Lianzhoutianxin, Luokeng’exi, Shimentai, Xiangtoushan, Yunkaishan, Bangliangchangbiyuan, Chongzuobaitouyehou, Daguishan’exi, Dayaoshan, Encheng, Fangchengjinhuacha, Huaping, Jiuwanshan, Qichong, Shiwandashan, Yinzhulaoshanziyuanlengshan, Yuanbaoshan, Dashahe, Fodingshan, Leigongshan, Yinggeling, Changlihuangjinhaian, Hengshuihu, Qingyazhai, Tuoliang, Xiaowutaishan, Baotianman, Henandabieshan, Gaoleshan, Huangheshidi, Jigongshan, Beijicun, Zhuonahe, Daxiagu, Mudanjiangdongbeihu, Dongfanghong, Duobuku’er, Fenglin, Heilongjiangfenghuangshan, Gongbielahe, Lingfeng, Maolangou, Mingshui, Mudanfeng, Pingdingshan, Qixingdongbeihu, Sanhuanpao, Shankou, Taipinggou, Wuyiling, Wuyu’erhe, Wudalianchi, Xiaobeihu, Xinqingbaitouhe, Youhao, Zhongyangzhanheizuisongji, Badongjinsihou, Duheyuan, Hubeidabieshan, Mulinzi, Nanhe, Qizimeishan, Saiwudang, Sanxiadalaoling, Shennongjia, Shibalichangxia, Wudaoxia, Xianfengzhongjianhedani, Xingdoushan, Yerengou, Baiyunshan, Dong’anshunhuangshan, Dongdongtinghu, Gaowangjie, Hupingshan, Jintongshan, Jiuyishan, Wuyunjie, Xidongtinghu, Baishanyuanshe, Boluohu, Hunchundongbeihu, Ji’an, Jingyu, Shihu, Wangqing, Yanminghu, Dafengmilu, Yanchengshidizhenqin, Ganjiangyuan, Jiulingshan, Lushan, Qiyunshan, Tongboshan, Wuyuansenlinniaolei, Yangjifeng, Bailiangshan, Daheishan, Hongluoshan, Louzishan, Nulu’erhushan, Qinglonghe, Shedaolaotieshan, Yalujiangkoushidi, Zhanggutai, A’lu, Bilahe, Gaogesitaihanwula, Hanshan, Hanma, Qingshan, Wulanba, Datongbeichuanheyuanqu, Huanghesanjiaozhou, Nansihu, Heichashan, Lingkongshan, Guanyinshan, Hanchenghuanglongshanhemaji, Huangbaiyuan, Huanglongshanhemaji, Luoyangzhenxishuishengdongwu, Micangshan, Motianling, Pingheliang, Taibaishan, Taibaixushuihe, Wuliangshan, Zhouzhilaoxiancheng, Anzihe, Baihe, Caopo, Gexigou, Heizhugou, Jiudingshan, Laojunshan, Liziping, Nuoshuihezhenxishuishengdongwu, Qianfoshan, Xiaozhaizigou, Xuebaoding, Ailaoshan, Daweishan, Jiaozishan, Lvchunhuanglianshan, Nan’gunhe, Tongbiguan, Wenshan, Wumengshan, Yuanjiang, Yunlongtianchi, Jiushanliedao, Wuyanling, Changxingyangzi’e, Dabashan, Jinfoshan, Wulipo, and Xuebaoshan.

Supplementary material

12665_2016_5364_MOESM1_ESM.docx (31 kb)
Supplementary material 1 (DOCX 31 kb)

References

  1. Adams HD, Guardiola-Claramonte M, Barron-Gafford GA, Villegas JC, Breshears DD, Zou CB, Troch PA, Huxman TE (2009) Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global change type drought. Proc Natl Acad Sci USA 106:7063–7066CrossRefGoogle Scholar
  2. Alagador D, Martins MJ, Cerdeira JO, Cabeza M, Araújo MB (2011) A probability-based approach to match species with reserves when data are at different resolutions. Biol Conser 144:811–820CrossRefGoogle Scholar
  3. Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears D, Hogg E, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim J, Allard G, Running S, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684CrossRefGoogle Scholar
  4. Andam KS, Ferraro PJ, Pfaff A, Sanchez-Azofeifa GA, Robalino JA (2008) Measuring the effectiveness of protected area networks in reducing deforestation. Proc Natl Acad Sci USA 105:16089–16094CrossRefGoogle Scholar
  5. Andrello M, Jacobi MN, Manel S, Thuiller W, Mouillot D (2014) Extending networks of protected areas to optimize connectivity and population growth rate. Ecography. doi: 10.1111/ecog.00975 Google Scholar
  6. Araujo MB, Guisan A (2006) Five (or so) challenges for species distribution modelling. J Biogeogr 33:1677–1688CrossRefGoogle Scholar
  7. Araújo MB, Alagador D, Cabeza M, Nogués-Bravo D, Thuiller W (2011) Climate change threatens European conservation areas. Ecol Lett 14:484–492CrossRefGoogle Scholar
  8. Arino O, Ramos Perez J, Kalogirou V, Bontemps S, Defourny P, Van Bogaert E (2012) Global land cover map for 2009 (GlobCover 2009)Google Scholar
  9. Brown HCP, Smit B, Somorin OA, Sonwa DJ, Nkem JN (2014) Climate Change and Forest Communities: prospects for Building Institutional Adaptive Capacity in the Congo Basin Forests. Ambio 43:759–769CrossRefGoogle Scholar
  10. Calabrese JM, Certain G, Kraan C, Dormann CF (2014) Stacking species distribution models and adjusting bias by linking them to macroecological models. Glob Ecol Biogeogr 23:99–112CrossRefGoogle Scholar
  11. Corlett RT, Westcott DA (2013) Will plant movements keep up with climate change? Trends Ecol Evol 28:482–488CrossRefGoogle Scholar
  12. D’Amen M, Bombi P, Pearman PB, Schmatz DR, Zimmermann NE, Bologna MA (2011) Will climate change reduce the efficacy of protected areas for amphibian conservation in Italy? Biol Conserv 144:989–997CrossRefGoogle Scholar
  13. Danese M, Lazzari M, Murgante B (2008) Kernel density estimation methods for a geostatistical approach in seismic risk analysis: the case study of potenza hilltop town (Southern Italy). In: Computational science and its applications—ICCSA 2008. Springer, Berlin, pp 415–429Google Scholar
  14. DeFries R, Hansen A, Newton AC, Hansen MC (2005) Increasing isolation of protected areas in tropical forests over the past twenty years. Ecol Appl 15:19–26CrossRefGoogle Scholar
  15. Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57CrossRefGoogle Scholar
  16. Gallagher RV, Hughes L, Leishman MR (2012) Species loss and gain in communities under future climate change: consequences for functional diversity. Ecography 36:531–540CrossRefGoogle Scholar
  17. Gillson L, Dawson TP, Jack S, McGeoch MA (2013) Accommodating climate change contingencies in conservation strategy. Trends Ecol Evol 28:135–142CrossRefGoogle Scholar
  18. Goldenshluger A, Lepski O (2011) Bandwidth selection in kernel density estimation: oracle inequalities and adaptive minimax optimality. Ann Stat 39:1608–1632CrossRefGoogle Scholar
  19. Gormley AM, Forsyth DM, Griffioen P, Lindeman M, Ramsey DS, Scroggie MP, Woodford L (2011) Using presence-only and presence–absence data to estimate the current and potential distributions of established invasive species. J Appl Ecol 48:25–34CrossRefGoogle Scholar
  20. Hanewinkel M, Cullmann DA, Schelhaas MJ, Nabuurs GJ, Zimmermann NE (2013) Climate change may cause severe loss in the economic value of European forest land. Nat Clim Change 3:203–207CrossRefGoogle Scholar
  21. Hannah L, Midgley GF, Millar D (2002) Climate change-integrated conservation strategies. Glob Ecol Biogeogr 11:485–495CrossRefGoogle Scholar
  22. Harte J, Ostling A, Green JL, Kinzig A (2004) Biodiversity conservation: climate change and extinction risk. Nature. doi: 10.1038/nature02718 Google Scholar
  23. Hernandez PA, Graham CH, Master LL, Albert DL (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29:773–785CrossRefGoogle Scholar
  24. Hou X (2001) Vegetation atlas of China. Chinese Academy of Science, The Editorial Board of Vegetation Map of China. Scientific Press, BeijingGoogle Scholar
  25. IPCC (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New YorkGoogle Scholar
  26. Kim HG, Lee DK, Park C, Kil S, Son Y, Park JH (2015) Evaluating landslide hazards using RCP 4.5 and 8.5 scenarios. Environ Earth Sci 73:1385–1400CrossRefGoogle Scholar
  27. Lindborg R, Eriksson O (2004) Historical landscape connectivity affects present plant species diversity. Ecology 85:1840–1845CrossRefGoogle Scholar
  28. Loiselle BA, Howell CA, Graham CH, Goerck JM, Brooks T, Smith KG, Williams PH (2003) Avoiding pitfalls of using species distribution models in conservation planning. Conserv Biol 17:1591–1600CrossRefGoogle Scholar
  29. Mamet SD, Chun KP, Metsaranta JM, Barr AG, Johnstone JF (2015) Tree rings provide early warning signals of jack pine mortality across a moisture gradient in the southern boreal forest. Environ Res Lett 10:084021CrossRefGoogle Scholar
  30. Merow C, Smith MJ, Silander JA (2013) A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36:1058–1069CrossRefGoogle Scholar
  31. Millar CI, Stephenson NL, Stephens SL (2007) Climate change and forests of the future: managing in the face of uncertainty. Ecol Appl 17:2145–2151CrossRefGoogle Scholar
  32. Moilanen A, Anderson BJ, Arponen A, Pouzols FM, Thomas CD (2013) Edge artefacts and lost performance in national versus continental conservation priority areas. Divers Distrib 19:171–183CrossRefGoogle Scholar
  33. Olson M, Dinerstein E, Wikramanayake D, Burgess D, Powell G, Underwood E, D’amico J, Itoua I, Strand H, Morrison J, Loucks C, Allnutt T, Ricketts T, Kura Y, Lamoreux J, Wettengel W, Hedao P, Kassem K (2001) Terrestrial ecoregions of the world: a new map of life on Earth a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51:933–938CrossRefGoogle Scholar
  34. Park NW (2015) Using maximum entropy modeling for landslide susceptibility mapping with multiple geoenvironmental data sets. Environ Earth Sci 73:937–949CrossRefGoogle Scholar
  35. Peterson AT, Li X (2014) Niche-based projections of wetlands shifts with marine intrusion from sea level rise: an example analysis for North Carolina. Environ Earth Sci 73:1479–1490CrossRefGoogle Scholar
  36. Ponce-Reyes R, Reynoso-Rosales VH, Watson JE, VanDerWal J, Fuller RA, Pressey RL, Possingham HP (2012) Vulnerability of cloud forest reserves in Mexico to climate change. Nat Clim change 2:448–452CrossRefGoogle Scholar
  37. Pretty J, Smith D (2004) Social capital in biodiversity conservation and management. Conserv Biol 18:631–638CrossRefGoogle Scholar
  38. Steneck RS, Graham MH, Bourque BJ, Corbett D, Erlandson JM, Estes JA, Tegner MJ (2002) Kelp forest ecosystems: biodiversity, stability, resilience and future. Environ Conserv 29:436–459CrossRefGoogle Scholar
  39. Thomas CD (2011) Translocation of species, climate change, and the end of trying to recreate past ecological communities. Trends Ecol Evol 26:216–221CrossRefGoogle Scholar
  40. Wan J, Wang C, Han S, Yu J (2014) Planning the priority protected areas of endangered orchid species in northeastern China. Biodivers Conserv 23:1395–1409CrossRefGoogle Scholar
  41. Wang C, Wan J, Mu X, Zhang Z (2015) Management planning for endangered plant species in priority protected areas. Biodivers Conserv 24:2383–2397CrossRefGoogle Scholar
  42. Warren R, Price J, Fischlin A, de la Nava SantosS, Midgley G (2011) Increasing impacts of climate change upon ecosystems with increasing global mean temperature rise. Clim Change 106:141–177CrossRefGoogle Scholar
  43. Wise RM, Reyers B, Guo C, Midgley GF, De Lange W (2012) Costs of expanding the network of protected areas as a response to climate change in the cape floristic region. Conserv Biol 26:397–407CrossRefGoogle Scholar
  44. Yin Y, Liu H, Liu G, Hao Q, Wang H (2013) Vegetation responses to mid-Holocene extreme drought events and subsequent long-term drought on the southeastern Inner Mongolian Plateau, China. Agric For Meteorol 178:3–9CrossRefGoogle Scholar
  45. Yu J, Wang C, Wan J, Han S, Wang Q, Nie S (2014) A model-based method to evaluate the ability of nature reserves to protect endangered tree species in the context of climate change. For Ecol Manag 327:48–54CrossRefGoogle Scholar
  46. Zhang MG, Zhou ZK, Chen WY, Cannon CH, Raes N, Slik JW (2014) Major declines of woody plant species ranges under climate change in Yunnan, China. Divers Distrib 20:405–415CrossRefGoogle Scholar
  47. Zhang Z, Yan Y, Tian Y, Li J, He JS, Tang Z (2015) Distribution and conservation of orchid species richness in China. Biol Conserv 181:64–72CrossRefGoogle Scholar
  48. Zome RJ, Xu J, Wang M, Trabucco A, Li Z (2015) Projected impact of climate change on the effectiveness of the existing protected area network for biodiversity conservation within Yunnan Province, China. Biol Conserv 184:335–345CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Chun-Jing Wang
    • 1
  • Ji-Zhong Wan
    • 1
  • Gang-Min Zhang
    • 1
  • Zhi-Xiang Zhang
    • 1
  • Jing Zhang
    • 1
  1. 1.School of Nature ConservationBeijing Forestry UniversityBeijingChina

Personalised recommendations