Skip to main content

Advertisement

Log in

Phosphorus downward movement in soil highly charged with cattle manure

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

In the rolling pampa region, the intensification of beef cattle feeding operations generates large volumes of solid organic manure which has high concentrations of phosphorus (P). This residue can be reused like organic fertilizer in agricultural practices, increasing crop production and closing the nutrients cycle. However, this practice can cause water pollution if not well managed. The aim was to study the vertical and temporal migration of P and its relations with edaphic properties in agricultural soil that has received a single heavy application of cattle manure. Three treatments were analyzed: (1) Zone 4 (Z4)—plot manured with 1600 tn ha−1 in 2004; (2) Zone 10 (Z10)—plot manured with 500 tn ha−1 in 2010 and (3) Zone control (ZC)—plot free of cattle manure. Water extractable phosphorus—WEP, soil test Bray and Kurtz P—Bray P, total phosphorus—TP, organic carbon—OC, pH and electrical conductivity were quantified. Results indicate high concentration of TP, Bray P and WEP in deeper horizons of impacted plots, showing the mobility of this nutrient. Correlation between TP and OC% were established for Z4 y Z10 in 88 and 84 %, demonstrating that the organic matter that moved in the profile presented high P content. An increase of salinity of 257 and 345 % for Z4 and Z10, respectively, was found in the deepest samples. The quantification of an empirical rate (EARP) showed the downward movement of P reaching 150 cm in Z4 and 90 cm in Z10. The results have shown that application of large volumes of solid manure saturated P retention capacity favoring its movement towards underlying water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Álvarez Benedí J, García Sinovas D, Muñoz Carpena R, Bolado S (2001) Aplicación de la técnica de interrupción de flujo al estudio del transporte de solutos en columnas de suelo. In: López Rodríguez JJ y Quemada Sáez Badillos M (eds) Temas de Investigación en Zona no Saturada (Vol. 5). Actas de las V Jornadas sobre Investigación de la Zona no Saturada del Suelo—ZNS’01.Universidad de Navarra. Pamplona, p 177

  • Barnett GM (1994) Phosphorus forms in animal manure. Biores Technol 49:139–147. doi:10.1016/0960-8524(94)90077-9

    Article  Google Scholar 

  • Beven K, Germann P (1982) Macropores and water flow in soils. Water Resour Res 18:1311–1325. doi:10.1029/WR018i005p01311

    Article  Google Scholar 

  • Blake GR, Hartge KH (1986) Bulk density. In: Klute A (ed) Methods of soil analysis. Part 1. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI, pp 363–375

  • Bolster CH, Sistani KR (2009) Sorption of phosphorus from swine, dairy, and poultry manures. Commun Soil Sci Plant Anal 40:1106–1123. doi:10.1080/00103620902753822

    Article  Google Scholar 

  • Borda T, Celi L, Zavattaro L, Sacco D, Barberis E (2011) Effect of agronomic management on risk of suspended solids and phosphorus losses from soil to waters. J Soils Sediments 11:440–451. doi:10.1007/s11368-010-0327-y

    Article  Google Scholar 

  • Buol SW, Southard RJ, Graham RC, McDaniel PA (2011) Front matter, in soil genesis and classification, 6th edn. Wiley, Oxford. doi:10.1002/9780470960622.fmatter

    Book  Google Scholar 

  • Campbell LB, Racz GJ (1975) Organic and inorganic P content, movement and mineralization of P in soil beneath a feedlot. Can J Soil Sci 55:457–466. doi:10.4141/cjss75-052

    Article  Google Scholar 

  • Chardon WJ, Schoumans OF (2002) Solubilization of phosphorus: concepts and process description of chemical mechanisms. In: Chardon WJ, Schoumans OF (eds) Phosphorus losses from agricultural soils: processes at the field scale. COST Action 832. Alterra Wageningen, The Netherlands, pp 42–52

    Google Scholar 

  • Ciapparelli IC, García AR (2015) Use of manure to wheat production in an Argentinean Hapludoll soil. J Pollut Eff Cont. doi:10.4172/2375-4397.1000131

    Google Scholar 

  • Conti M (2000) Principios de edafología con énfasis en suelos argentinos. 2da ed. Editorial Facultad de Agronomía—Universidad de Buenos Aires. Buenos Aires, p 430

  • Damodar Reddy D, Subba Rao S, Rupa TR (2000) Effects of continuous use of cattle manure and fertilizer phosphorus on crop yields and soil organic phosphorus in a Vertisol. Bioresour Technol 75:113–118. doi:10.1016/S0960-8524(00)00050-X

    Article  Google Scholar 

  • Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2008) InfoStat, versión 2008. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina

    Google Scholar 

  • Djodjic F (2001) Displacement of phosphorus in structured soils. Doctoral Thesis, Swedish University of Agricultural Sciences, Uppsala. Acta Universitatis agriculturae Sueciae, Agraria 283. ISSN 1401-6249. ISBN 91-576-5826-9, p 30

  • Eghball B (1999) Liming effects of beef cattle feedlot manure or compost. Commun Soil Sci Plant Anal 30(19, 20):2563–2570. doi:10.1080/00103629909370396

    Article  Google Scholar 

  • Eghball B (2002) Waste management—soil properties as influenced by phosphorus- and nitrogen-based manure and compost applications. Agron J 94:128–135. doi:10.2134/agronj2002.0128

    Article  Google Scholar 

  • Eghball B (2003) Leaching of phosphorus fractions following manure or compost application. Commun Soil Sci Plant Anal 34(19, 20):2803–2815. doi:10.1081/CSS-120025207

    Article  Google Scholar 

  • Eghball B, Power JF (1994) Beef cattle feedlot manure management. J Soil Water Conserv 49:113–122

    Google Scholar 

  • Eghball B, Ginting D, Gilleyet JE (2004) Residual effects of manure and compost applications on corn production and soil properties. Agron J 96:442–447. doi:10.2134/agronj2004.4420

    Article  Google Scholar 

  • Eichler-Löbermann B, Köhne S, Köppen D (2007) Effect of organic, inorganic, and combined organic and inorganic P fertilization on plant P uptake and soil P pools. J Plant Nutr Soil Sci 170:623–628. doi:10.1002/jpln.200620645

    Article  Google Scholar 

  • Elrashidi MA, Mays MD, Zimmer (2005) Changes in release characteristics and runoff phosphorus for soils amended with manure. Commun Soil Sci Plant Anal 36:1851–1873. doi:10.1081/CSS-200062472

    Article  Google Scholar 

  • EPA (Environmental Protection Agency) (1996) Acid digestion of sediments, sludges, and soils. Revision 2 [Online]. Available at https://www.epa.gov/sites/production/files/2015-06/documents/epa-3050b.pdf. Accessed 22 Mar 2016, USEPA, Cincinnati, OH

  • EPA (Environmental Protection Agency) (2000) Profile of the Agricultural Livestock Production Industry. EPA 310-R-00-002. USEPA, Washington DC, p 166

  • EPA (Environmental Protection Agency) (2003) National Pollutant discharge elimination system permit regulation and effluent limitation guidelines and standards for concentrated animal feeding operations (CAFOs). EPA HQ-OW-2002-0025-0058. USEPA, Washington DC, p 100

  • FAO (Food and Agriculture Organization) (2006) Evapotranspiración del cultivo. Guías para la determinación de los requerimientos de agua de los cultivos. Estudio FAO, Riego Y Drenaje. No. 56. Food and Agriculture Organization of the United Nations, Rome, p 299

  • FAO (Food and Agriculture Organization) (2009) Guía para la descripción de suelos, 4ta edn. Food and Agriculture Organization of the United Nations, Rome, p 110

    Google Scholar 

  • Galvão SRDS, Salcedo IH (2009) Soil phosphorus fractions in sandy soils amended with cattle manure for long periods. R Bras Ci Solo 33:613–622. doi:10.1590/S0100-06832009000300014

    Article  Google Scholar 

  • García AR, Iorio AF (2003) Phosphorus distribution in sediments of Morales Stream (tributary of the Matanza-Riachuelo River, Argentina). The influence of organic point source contamination. Kluwer Hydrobiol 492:129–138. doi:10.1023/A:1024874030418

    Article  Google Scholar 

  • García AR, Maisonnave R, Massobrio M, de Iorio AF (2012) Field-scale evaluation of water fluxes and manure solution leaching in feedlot pen soils. J Environ Qual 41:1591–1599. doi:10.2134/jeq2011.0320

    Article  Google Scholar 

  • García AR, Fleite SN, Vázquez Pugliese D, de Iorio AF (2013) Feedlots and pollution—a growing threat to water resources of agro-production zone in Argentina. Environ Sci Technol 47:11932–11933. doi:10.1021/es4040683

    Article  Google Scholar 

  • Gee GW, Bauder JW (1986) Particle-size analysis. In: Klute A (ed) Methods of soil analysis: Part 1. 2nd edn. Agron Monogr 9. SSSA and ASA, Madison, WI, pp 383–411

  • Glæsner N, Donner E, Magid J, Rubæk GH, Zhang H, Lombi E (2012) Characterization of leached phosphorus from soil, manure, and manure-amended soil by physical and chemical fractionation and diffusive gradients in thin films (DGT). Environ Sci Technol 46:10564–10571. doi:10.1021/es301861a

    Article  Google Scholar 

  • Graetz DA, Nair VD, Portier KM, Voss RL (1999) Phosphorus accumulation in manure—impacted Spodosols of Florida. Agric Ecosyst Environ 75:31–40. doi:10.1016/S0167-8809(99)00070-5

    Article  Google Scholar 

  • Hazelton P, Murphy B (2007) Interpreting soil test results. What do all the numbers mean?, 2nd edn. CSIRO Publishing, Collinwood, p 160

    Google Scholar 

  • INTA (Instituto Nacional de Tecnología Agropecuaria) (1980) Instituto de Suelo. Carta de suelo de la República Argentina. Hoja 3560-18-1 Marcos Paz. INTA-CIRN. Buenos Aires, Argentina

  • INTA (Instituto Nacional de Tecnología Agropecuaria) (2010) Guía de buenas prácticas para el manejo de nutrientes (N y P) en la Pampa Ondulada. Desarrollo de Índices de Riesgo de contaminación por N y P. Grupo Medio Ambiente. EEA INTA Pergamino, p 65

  • Kuo S (1996) Phosphorus. In: Sparks DL, Page AL, Helmke PA, Loeppert RH (eds) Methods of soil analysis: Part 3. Chemical methods, SSSA Book Ser. 5. SSSA, Madison, WI, pp 869–920

  • Miller JJ, Handerek BP, Beasley BW, Olson EC, Yanke LJ, Larney FJ, McAllister TA, Olson BM, Selinger LB, Chanasyk DS, Hasselback P (2004) Quantity and quality of runoff from a beef cattle feedlot in southern Alberta. J Environ Qual 33(3):1088–1097. doi:10.2134/jeq2004.1088

    Article  Google Scholar 

  • Morari F, Lugato E, Giardini L (2008) Olsen phosphorus, exchangeable cations and salinity in two long-term experiments of north-eastern Italy and assessment of soil quality evolution. Agric Ecosyst Environ 124:85–96. doi:10.1016/j.agee.2007.08.001

    Article  Google Scholar 

  • Murphy LJ, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27(3):31–36. doi:10.1016/S0003-2670(00)88444-5

    Article  Google Scholar 

  • Nair VD, Graetz DA (2002) Phosphorus saturation in spodosols impacted by manure. J Environ Qual 31:1279–1285. doi:10.2134/jeq2002.1279

    Article  Google Scholar 

  • Øgaard AF (1996) Effect of fresh and composted cattle manure on phosphate retention in soil. Acta Agric Scand Sect B Soil Plant Sci 46:98–105. doi:10.1080/09064719609413121

    Google Scholar 

  • Page AL (1982) Method of soil analysis. Part 2: Agronomy Series Monograph No. 9. ASA, Soil Sci. Soc. Am., Inc. Madison, Wisconsin, USA

  • Pal SK (2011) Phosphorus sorption-desorption characteristics of soils under different land use patterns of eastern India. Arch Agron Soil Sci 57(4):365–376. doi:10.1080/03650341003605743

    Article  Google Scholar 

  • Sekhon BS (2002) Modeling of soil phosphorus sorption and control of phosphorus pollution with acid mine drainage floc. Dissertation submitted to the Davis College of Agriculture, Forestry, and Consumer Sciences at West Virginia University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Plant and Soil Sciences, p 224

  • SERA-IEG 17 (Southern Extension/Research Activity—Information Exchange Group) (2000) Methods of phosphorus analysis for soils, sediments, residuals and waters. Southern Cooperative Series Bulletin No. 396, p 102

  • Sharpley AN, Sisak I (1997) Differential availability of manure and inorganic sources of phosphorus in soil. Soil Sci Soc Am J 61:1503–1508. doi:10.2136/sssaj1997.03615995006100050030x

    Article  Google Scholar 

  • Sharpley AN, McDowell RW, Kleinman PJA (2004) Amounts, forms and solubility of phosphorus in soils receiving manure. Soil Sci Soc Am J 68:2048–2057. doi:10.2136/sssaj2004.2048

    Article  Google Scholar 

  • Uyanöz R, Çetin Ü, Karaarslan E (2006) Effect of organic materials on yield and nutrient accumulation of wheat. J Plant Nutr 29:959–974. doi:10.1080/01904160600651787

    Article  Google Scholar 

  • Whalen JK, Chang C (2001) Phosphorus accumulation in cultivated soils from long-term annual applications of cattle feedlot manure. J Environ Qual 30:229–237. doi:10.2134/jeq2001.301229x

    Article  Google Scholar 

  • Wyngaard N, Picone L, Videla C, Zamuner E, Maceira N (2011) Impact of feedlot on soil phosphorus concentration. J Environ Prot 2:280–286. doi:10.4236/jep.2011.23031

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ileana Cecilia Ciapparelli.

Additional information

This article is part of a Topical Collection in Environmental Earth Sciences on “3RAGSU”, guest edited by Daniel Emilio Martinez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciapparelli, I.C., de Iorio, A.F. & García, A.R. Phosphorus downward movement in soil highly charged with cattle manure. Environ Earth Sci 75, 568 (2016). https://doi.org/10.1007/s12665-016-5284-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-5284-3

Keywords

Navigation