Meteorological influence on the 2009 influenza a (H1N1) pandemic in mainland China

  • Xuyi Zhao
  • Jun Cai
  • Duole Feng
  • Yuqi Bai
  • Bing Xu
Thematic Issue
Part of the following topical collections:
  1. Environment and Health in China II


Since May 2009, a novel influenza A (H1N1) pandemic has spread rapidly in mainland China from Mexico. Although there has been substantial analysis of this influenza, a reliable work estimating its spatial dynamics and determinants remain scarce. The survival and transmission of this pandemic virus not only depends on its biological properties, but also a correlation with external environmental factors. In this study, we collected daily influenza A (H1N1) cases and corresponding annual meteorological factors in mainland China from May 2009 to April 2010. By analyzing these data at county-level, a similarity index, which considered the spatio-temporal characteristics of the disease, was proposed to evaluate the role and lag time of meteorological factors in the influenza transmission. The results indicated that the influenza spanned a large geographical area, following an overall trend from east to west across the country. The spatio-temporal transmission of the disease was affected by a series of meteorological variables, especially absolute humidity with a 3-week lag. These findings confirmed that the absolute humidity and other meteorological variables contributed to the local occurrence and dispersal of influenza A (H1N1). The impact of meteorological variables and their lag effects could be involved in the improvement of effective strategies to control and prevent the disease outbreaks.


Influenza A (H1N1) pandemic Meteorological factors Fréchet distance Time lag China 



This study was supported by the National Research Program of the Ministry of Science and Technology in China (2012AA12A407, 2012CB955501), the National Natural Science Foundation of China (41271099). The authors would thank Chengdong Xu for helpful theoretical consultation. In addition, comments from Yawen Zhang and Yan Zhou also improved this paper.


  1. Alt H, Godau M (1995) Computing the Fréchet distance between two polygonal curves. Int J Comput Geom Appl 5:75–91. doi: 10.1142/S0218195995000064 CrossRefGoogle Scholar
  2. Anselin L (1995) Local indicators of spatial association—LISA. Geogr anal 27:93–115. doi: 10.1111/j.1538-4632.1995.tb00338.x CrossRefGoogle Scholar
  3. Barreca AI, Shimshack JP (2012) Absolute humidity, temperature, and influenza mortality: 30 years of county-level evidence from the United States. Am J Epidemiol 176:S114–S122. doi: 10.1093/aje/kws259 CrossRefGoogle Scholar
  4. CDC CCfDCaP (2010) Chinese Influenza Weekly Report Accessed 2 Nov 2014
  5. China Meteorological Data Sharing Service System (2008) Accessed 2 Nov 2014
  6. Chowell G et al (2012) The influence of climatic conditions on the transmission dynamics of the 2009 A/H1N1 influenza pandemic in Chile. BMC Infect Dis 12:298. doi: 10.1186/1471-2334-12-298 CrossRefGoogle Scholar
  7. Dai A (2006) Recent climatology, variability, and trends in global surface humidity. J Clim 19:3589–3606. doi: 10.1175/JCLI3816.1 CrossRefGoogle Scholar
  8. Eiter T, Mannila H (1994) Computing discrete Fréchet distance. Technical University of Vienna. CD-TR 94/64Google Scholar
  9. Fang L-Q et al (2012) Distribution and risk factors of 2009 pandemic influenza A (H1N1) in mainland China. Am J Epidemiol 175:890–897. doi: 10.1093/aje/kwr411 CrossRefGoogle Scholar
  10. Fréchet MM (1906) Sur quelques points du calcul fonctionnel. Rendiconti del Circolo Matematico di Palermo (1884–1940) 22:1–72. doi: 10.1007/BF03018603 CrossRefGoogle Scholar
  11. Getis A, Ord JK (1992) The analysis of spatial association by use of distance statistics. Geogr anal 24:189–206. doi: 10.1111/j.1538-4632.1992.tb00261.x CrossRefGoogle Scholar
  12. Jiang ZB, Bai JJ, Cai J, Li RY, Jin ZY, Xu B (2012) Characterization of the global spatio-temporal transmission of the 2009 pandemic H1N1 influenza. J Geo-inform Sci 14:6Google Scholar
  13. Lipsitch M, Viboud C (2009) Influenza seasonality: lifting the fog. Proc Natl Acad Sci 106:3645–3646. doi: 10.1073/pnas.0900933106 CrossRefGoogle Scholar
  14. Lowen AC, Mubareka S, Steel J, Palese P (2007) Influenza virus transmission is dependent on relative humidity and temperature. PLoS Pathog 3:e151. doi: 10.1371/journal.ppat.0030151 CrossRefGoogle Scholar
  15. Lowen AC, Steel J, Mubareka S, Palese P (2008) High temperature (30 C) blocks aerosol but not contact transmission of influenza virus. J Virol 82:5650–5652. doi: 10.1128/JVI.00325-08 CrossRefGoogle Scholar
  16. McDevitt J, Rudnick S, First M, Spengler J (2010) Role of absolute humidity in the inactivation of influenza viruses on stainless steel surfaces at elevated temperatures. Appl Environ Microbiol 76:3943–3947. doi: 10.1128/AEM.02674-09 CrossRefGoogle Scholar
  17. Mikolajczyk R, Akmatov M, Rastin S, Kretzschmar M (2008) Social contacts of school children and the transmission of respiratory-spread pathogens. Epidemiol Infect 136:813–822. doi: 10.1017/S0950268807009181 CrossRefGoogle Scholar
  18. Polozov IV, Bezrukov L, Gawrisch K, Zimmerberg J (2008) Progressive ordering with decreasing temperature of the phospholipids of influenza virus. Nat Chem Biol 4:248–255. doi: 10.1038/nchembio.77 CrossRefGoogle Scholar
  19. Real-Time R (2009) Emergence of a novel swine origin influenza A (H1N1) virus in humans. N Engl J Med 360:2605–2615. doi: 10.1056/NEJMoa0903810 CrossRefGoogle Scholar
  20. Riley S (2008) A prospective study of spatial clusters gives valuable insights into dengue transmission. PLoS Med 5:e220. doi: 10.1371/journal.pmed.0050220 CrossRefGoogle Scholar
  21. Shaman J, Kohn M (2009) Absolute humidity modulates influenza survival, transmission, and seasonality. Proc Natl Acad Sci 106:3243–3248. doi: 10.1073/pnas.0806852106 CrossRefGoogle Scholar
  22. Shaman J, Pitzer VE, Viboud C, Grenfell BT, Lipsitch M (2010) Absolute humidity and the seasonal onset of influenza in the continental United States. PLoS Biol 8:e1000316. doi: 10.1371/journal.pbio.1000316 CrossRefGoogle Scholar
  23. Shaman J, Goldstein E, Lipsitch M (2011) Absolute humidity and pandemic versus epidemic influenza. Am J Epidemiol 173:127–135. doi: 10.1093/aje/kwq347 CrossRefGoogle Scholar
  24. Tang JW (2009) The effect of environmental parameters on the survival of airborne infectious agents. J Royal Soc Interface. doi: 10.1098/rsif.2009.0227.focus Google Scholar
  25. Tuite AR et al (2010) Estimated epidemiologic parameters and morbidity associated with pandemic H1N1 influenza. Can Med Assoc J 182:131–136. doi: 10.1503/cmaj.091807 CrossRefGoogle Scholar
  26. Wang L, Wang Y, Jin S, Wu Z, Chin DP, Koplan JP, Wilson ME (2008) Emergence and control of infectious diseases in China. The Lancet 372:1598–1605. doi: 10.1016/S0140-6736(08)61365-3 CrossRefGoogle Scholar
  27. Wang JF, Li XH, Christakos G, Liao YL, Zhang T, Gu X, Zheng XY (2010) Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region. China Int J Geogr Inf Sci 24:107–127. doi: 10.1080/13658810802443457 CrossRefGoogle Scholar
  28. Wang J, Xu C, Tong S, Chen H, Yang W (2013) Spatial dynamic patterns of hand-foot-mouth disease in the People’s Republic of China. Geosp Health 7:381–390CrossRefGoogle Scholar
  29. WHO (2010) Pandemic (H1N1) 2009—update 112. Accessed 2 Nov 2014
  30. Xu B, Jin ZY, Jiang ZB, Guo JP, Timberlake M, Ma XL (2014) Climatological and geographical impacts on global pandemic of influenza A (H1N1). In: Qihao Weng CP (ed) Global Urban Monitoring and Assessment through Earth Observation. Boca Raton, Florida, pp 233–248CrossRefGoogle Scholar
  31. Yu H-L, Yang S-J, Yen H-J, Christakos G (2011) A spatio-temporal climate-based model of early dengue fever warning in southern Taiwan. Stoch Environ Res Risk Assess 25:485–494. doi: 10.1007/s00477-010-0417-9 CrossRefGoogle Scholar
  32. Yu H et al (2012) Transmission dynamics, border entry screening, and school holidays during the 2009 influenza A (H1N1) pandemic. China Emerg Infect Dis 18:758–766CrossRefGoogle Scholar
  33. Yu H, Alonso WJ, Feng L, Tan Y, Shu Y, Yang W, Viboud C (2013) Characterization of regional influenza seasonality patterns in China and implications for vaccination strategies: spatio-temporal modeling of surveillance data. PLoS Med 10:e1001552CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Xuyi Zhao
    • 1
  • Jun Cai
    • 1
  • Duole Feng
    • 1
  • Yuqi Bai
    • 1
  • Bing Xu
    • 1
    • 2
    • 3
  1. 1.Center for Earth System ScienceTsinghua UniversityBeijingChina
  2. 2.State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System ScienceBeijing Normal UniversityBeijingChina
  3. 3.Department of GeographyUniversity of UtahSalt Lake CityUSA

Personalised recommendations