Skip to main content

Advertisement

Log in

Evaluating the impacts of fine-scale capillary heterogeneity and wettability on the behavior of buoyancy-driven CO2 migration and trapping mechanisms

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

One of the primary concerns in CO2 sequestration is long-term immobilization of CO2. There are several storage mechanisms to immobilize CO2 in a porous medium: structural, dissolution, residual, and mineral trapping. Storage analysis with fine-scale heterogeneity requires the investigation of a newly suggested mechanism: capillary barrier trapping. This study covers a quantitative assessment of the CO2 trapping capacity with residual, dissolution, and capillary barrier trapping mechanisms in heterogeneous formations. The effects of heterogeneity on CO2 trapping capacity are studied under different wettability scenarios. The Leverett J-function is applied so that every grid block has a different drainage capillary pressure curve, which is physically consistent with its heterogeneous properties and wettability. Based on contact angle, residual saturation and relative permeability curves are modeled. Different heterogeneity and wettability causes considerable variations in leakage of CO2, ranging from 6 to 38 %. The lateral correlation length of permeability affects the spatial distribution of CO2. As the permeability variation increases, the total amount of trapped CO2 increases significantly indicating a reduced potential risk of leakage. Although the residual and dissolution trappings decreases as the wetting condition changes from strongly water-wet to intermediate gas-wet, the amount of CO2 trapped by the capillary barriers increases considerably, and the mobile phase saturation of the CO2 is reduced. The results of this study have emphasized the importance of capillary barrier trapping, which takes a large portion of the immobilized CO2 phase, for stable underground storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Adibhatla B, Sun X, Mohanty KK (2005) Numerical studies of oil production from initially oil-wet fracture blocks by surfactant brine imbibition. In: The SPE international improved oil recovery conference, Kuala Lumpur. doi:10.2118/97687-MS

  • Bachu S (2008) CO2 storage in geological media: role, means, status and barriers to deployment. Prog Energy Combust Sci 34(2):254–273. doi:10.1016/j.pecs.2007.10.001

    Article  Google Scholar 

  • Behzadi H, Alvarado V, Mallick S (2011) CO2 saturation, distribution and seismic response in two-dimensional permeability model. Environ Sci Technol 45(21):9435–9441. doi:10.1021/es201969a

    Article  Google Scholar 

  • Brooks RH, Corey AT (1966) Properties of porous media affecting fluid flow. J Irrig Drain Div 92(2):61–90

    Google Scholar 

  • Bryant SL, Lakshminarasimhan S, Pope GA (2006) Buoyancy-dominated multiples flow and its impact on geological sequestration of CO2. SPE J 13(4):447–454. doi:10.2118/99938-PA

    Article  Google Scholar 

  • Chalbaud C, Robin M, Bekri S, Egermann P (2007) Wettability impact on CO2 storage in aquifers: visualisation and quantification using micromodel tests, pore network model and reservoir simulations. In: The international symposium of the society core analysts, Calgary

  • Elenius MT, Tchelepi HA, Johannsen K (2010) CO2 trapping in sloping aquifers: high resolution numerical simulations. In: XVIII International conference on water resources, Barcelona. doi:10.2523/IPTC-12304-MS

  • Ennis-King J, Paterson L (2005) Role of convective mixing in the long-term storage of carbon dioxide in deep saline formations. SPE J 10(3):349–356. doi:10.2118/84344-PA

    Article  Google Scholar 

  • Ewing RP, Berkowitz B (2001) Stochastic pore-scale growth models of DNAPL migration in porous media. Adv Water Resour 24(3):309–323. doi:10.1016/S0309-1708(00)00059-2

    Article  Google Scholar 

  • Farokhpoor R, Bjorkvik BJA, Lindeberg E, Torsaeter O (2013) CO2 wettability behavior during CO2 sequestration in saline aquifer—an experimental study on minerals representing sandstone and carbonate. Energy Proc 37:5339–5351. doi:10.1016/j.egypro.2013.06.452

    Article  Google Scholar 

  • Gunter WD, Wiwchar B, Perkins EH (1997) Aquifer disposal of CO2-rich greenhouse gases: extension of the time scale of experiment for CO2-sequestering reactions by geochemical modeling. Mineral Petrol 59:121–140. doi:10.1007/BF01163065

    Article  Google Scholar 

  • Hesse MA, Tchelepi HA, Cantwell BJ, Orr FM Jr (2007) Gravity currents in horizontal porous layers: transition from early to late self-similarity. J Fluid Mech 577:363–383. doi:10.1017/S0022112007004685

    Article  Google Scholar 

  • Hesse MA, Orr FM Jr, Tchelepi HA (2008) Gravity currents with residual trapping. J Fluid Mech 611:35–60. doi:10.1016/j.egypro.2009.02.113

    Article  Google Scholar 

  • Holtz MH (2002) Residual gas saturation to aquifer influx: a calculation method for 3-D computer reservoir model construction. In: The SPE gas technology symposium, Calgary. doi:10.2118/75502-MS

  • Juanes R, MacMinn CW (2008) Upscaling of capillary trapping under gravity override: application to CO2 sequestration in aquifers. In: The SPE/DOE symposium on improved oil recovery, Tulsa. doi:10.2118/113496-MS

  • Juanes R, Spiteri EJ, Orr FM Jr, Blunt MJ (2006) Impact of relative permeability hysteresis on geological CO2 storage. Water Resour Res 42(12):W12418. doi:10.1029/2005WR004806

    Article  Google Scholar 

  • Juanes R, MacMinn CW, Szulczewski ML (2010) The footprint of the CO2 plume during carbon dioxide storage in saline aquifers: storage efficiency for capillary trapping at the basin scale. Transp Porous Media 82(1):19–30. doi:10.1007/s11242-009-9420-3

    Article  Google Scholar 

  • Krevor S, Pini R, Li B, Benson SM (2011) Capillary heterogeneity trapping of CO2 in a sandstone rock at reservoir conditions. Geophys Res Lett 38:L15041. doi:10.1029/2011GL048239

    Article  Google Scholar 

  • Kumar A, Ozah R, Noh M, Pope GA, Bryant S, Sepehrnoori K, Lake LW (2005) Reservoir simulation of CO2 storage in deep saline aquifers. SPE J 10(3):336–348. doi:10.2118/89343-PA

    Article  Google Scholar 

  • Lake LW, Johns RT, Rossen WR, Pope GA (2014) Fundamentals of enhanced oil recovery. SPE, Richardson

    Google Scholar 

  • Land CS (1968) Calculation of imbibition relative permeability for two- and three-phase flow from rock properties. Soc Petrol Eng J 8(2):149–156. doi:10.2118/1942-PA

    Article  Google Scholar 

  • Leverett MC (1941) Capillary behavior in porous solids. Trans AIME 142(1):152–169. doi:10.2118/941152-G

    Article  Google Scholar 

  • Li K, Firoozabadi A (2000) Experimental study of wettability alteration to preferential gas-wetting in porous media and its effects. SPE Reserv Eval Eng 3(2):139–149. doi:10.2118/62515-PA

    Article  Google Scholar 

  • Macminn CW, Juanes R (2009) Post-injection spreading and trapping of CO2 in saline aquifers: impact of the plume shape at the end of injection. Comput Geosci 13(4):483–491. doi:10.1007/s10596-009-9147-9

    Article  Google Scholar 

  • Macminn CW, Szulczewski ML, Juanes R (2010) CO2 migration in saline aquifers. Part 1. Capillary trapping under slope and groundwater flow. J Fluid Mech 662:329–351. doi:10.1017/S0022112010003319

    Article  Google Scholar 

  • Macminn CW, Szulczewski ML, Juanes R (2011) CO2 migration in saline aquifers. Part 2. Capillary and solubility trapping. J Fluid Mech 688:321–351. doi:10.1017/jfm.2011.379

    Article  Google Scholar 

  • Oloruntobi OS, Laforce T (2009) Effect of aquifer heterogeneity on CO2 sequestration. In: The EUROPEC/EAGE annual conference and exhibition, Amsterdam. doi:10.2118/121776-MS

  • Ozah RC, Lakshminarasimhan S, Pope GA (2005) Numerical simulation of the storage of pure CO2 and CO2–H2S gas mixtures in deep saline aquifers. In: The SPE annual technical conference and exhibition, Dallas. doi:10.2118/97255-MS

  • Pope Ga, Wu W, Narayanaswamy G (2000) Modeling relative permeability effects in gas-condensate reservoirs with a new trapping model. SPE Reserv Eval Eng 3(2):171–178. doi:10.2118/62497-PA

    Article  Google Scholar 

  • Pruess K, Garcia J (2002) Multiphase flow dynamics during CO2 disposal into saline aquifers. Environ Geol 42(2–3):282–295. doi:10.1007/s00254-001-0498-3

    Article  Google Scholar 

  • Pruess K, Nordbotten J (2011) Numerical simulation studies of the long-term evolution of a CO2 plume under a sloping caprock. Transp Porous Media 90(1):135–151. doi:10.1007/s11242-011-9729-6

    Article  Google Scholar 

  • Rabinovich A, Itthisawatpan K, Durlofsky LJ (2015) Upscaling of CO2 injection into brine with capillary heterogeneity effects. J Petrol Sci Eng 134:60–75. doi:10.1016/j.petrol.2015.07.021

    Article  Google Scholar 

  • Saadatpoor E, Bryant SL, Sepehrnoori K (2008) Effect of heterogeneous capillary pressure on buoyancy-driven CO2 migration. In: The SPE/DOE symposium on improved oil recovery, Tulsa. doi:10.2118/113984-MS

  • Saadatpoor E, Bryant SL, Sepehrnoori K (2010) New trapping mechanism in carbon sequestration. Transp Porous Media 82(1):3–17. doi:10.1007/s11242-009-9446-6

    Article  Google Scholar 

  • Soroush M, Wessel-Berg D, Kleppe J (2013) Effects of wetting behaviour on residual trapping in CO2-brine systems. In: The SPE western regional and AAPG pacific section meeting, Monterey. doi:10.2118/165334-MS

  • Tang GQ, Firoozabadi A (2002) Relative permeability modification in gas/liquid systems through wettability alteration to intermediate gas wetting. SPE Reserv Eval Eng 5(6):427–436. doi:10.2118/81195-PA

    Article  Google Scholar 

  • Woods AW, Farcas A (2009) Capillary entry pressure and the leakage of gravity currents through a sloping layered permeable rock. J Fluid Mech 618:361–379. doi:10.1017/S0022112008004527

    Article  Google Scholar 

  • Wu S, Firoozabadi A (2010) Effect of salinity on wettability alteration to intermediate gas-wetting. SPE Reservoir Eval Eng 13(2):228–245. doi:10.2118/122486-PA

    Article  Google Scholar 

  • Yamamoto H, Zhang K, Karasaki K, Marui A, Uehara H, Nishikawa N (2009) Numerical investigation concerning the impact of CO2 geologic storage on regional groundwater flow. Int J Greenhouse Gas Control 3(5):586–599. doi:10.1016/j.ijggc.2009.04.007

    Article  Google Scholar 

  • Zatsepina OY, Pooladi-Darvish M (2011) Storage of CO2 hydrate in shallow gas reservoirs: pre- and post-injection periods. Greenhouse Gas Sci Technol 1(3):223–236. doi:10.1002/ghg.23

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Sang Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S.S., Kim, T.H., Jeong, M.S. et al. Evaluating the impacts of fine-scale capillary heterogeneity and wettability on the behavior of buoyancy-driven CO2 migration and trapping mechanisms. Environ Earth Sci 75, 550 (2016). https://doi.org/10.1007/s12665-016-5244-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-5244-y

Keywords

Navigation