Advertisement

Recent changes in the active layer thickness across the northern hemisphere

  • Dongliang LuoEmail author
  • Qingbai Wu
  • Huijun Jin
  • Sergey S. Marchenko
  • Lanzhi Lü
  • Siru Gao
Original Article

Abstract

To better understand the ecological and hydrological responses to climatic and cryospheric changes, the spatiotemporal variations in the active layer thickness (ALT) need to be scrupulously studied. Based on more than 230 sites from the circumpolar active layer monitoring network, the spatiotemporal characteristics of the ALT across the northern hemisphere during 1990–2015 were investigated. Results indicate that the ALT exhibits substantial spatial variations across the northern hemisphere, ranging from approximately 30 cm in the arctic and subarctic regions to greater than 10 m in the mountainous permafrost regions at mid-latitudes. Regional averages of ALT are 48 cm in Alaska, 93 cm in Canada, 164 cm in the Nordic countries (including Greenland and Svalbard) and Switzerland, 330 cm in Mongolia, 476 cm in Kazakhstan, and 230 cm on the Qinghai-Tibetan Plateau (QTP), respectively. In Russia, the regional averages of ALT in European North, West Siberia, Central Siberia, Northeast Siberia, Chukotka, and Kamchatka are 110, 92, 69, 61, 53 and 60 cm, respectively. Increasing trends of ALT were not uniformly present in the observational records. Significant changes in the ALT were observed at 73 sites, approximately 43.2 % of the investigated 169 sites that are available for statistical analysis. Less than 25 % Alaskan sites and approximately 33 % Canadian sites showed significant increase in the ALT. On the QTP, almost all the sites showed significant ALT increases. Insignificant increase and even decrease in the ALT were observed in some parts of the northern hemisphere, e.g., Mongolia, parts of Alaska and Canada. The air and ground temperatures, vegetation, substrate, microreliefs, and soil moisture in particular, play decisive roles in the spatiotemporal variations in the ALT, but the relationships among each other are complicated and await further studies.

Keywords

Circumpolar active layer monitoring (CALM) program Active layer thickness (ALT) Northern hemisphere Cryosphere and climate change Spatiotemporal variations 

Notes

Acknowledgments

This work was supported by the Chinese Academy of Sciences (CAS) Key Research Program (Grant No. KZZD-EW-13), the National Natural Science Foundation (NSF) of China (Grant No. 41301068), Excellent Youth Scholars Fund of Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences (Grant No. 51Y351051). Dr. Geoffrey Gay from University of Stuttgart and Dr. Victor F. Bense from Department of Environmental Sciences, Wageningen University provided generous assistance in English and technical editing. The authors are herein grateful to acknowledge their generous help. The authors also would like to salute all the scientists who contribute to the set-up, collection and synthesis of CALM data. The constructive suggestions from three anonymous reviewers and the editor-in-chief are especially appreciated.

References

  1. Åkerman HJ, Johansson M (2008) Thawing permafrost and thicker active layers in Sub-arctic Sweden. Permafrost Periglac 19:279–292CrossRefGoogle Scholar
  2. Anisimov OA, Shiklomanov NI, Nelson FE (1997) Global warming and active-layer thickness: results from transient general circulation models. Global Planet Change 15(3–4):61–77CrossRefGoogle Scholar
  3. Brown J (2010) Report from the international permafrost association: the IPY permafrost legacy. Permafrost Periglac 21:215–218CrossRefGoogle Scholar
  4. Brown J, Hinkel KM, Nelson FE (2000) The circumpolar active layer monitoring (calm) program: research designs and initial results. Polar Geogr 24(3):166–258CrossRefGoogle Scholar
  5. Brown J, Ferrians OJ, Heginbottom JA, Melnikov ES (2002) Circum-Arctic map of permafrost and ground-ice conditions, version 2. Natl Snow Ice Data Center, BoulderGoogle Scholar
  6. Burgess MM, Smith SL, Brown J, Romanovsky V, Hinkel K (2000) Global Terrestrial Network for Permafrost (GTNet-P): permafrost monitoring contributing to global climate observations, Geol Surv Can 2000-E14, pp 1–8Google Scholar
  7. Burn CR (1998) The active layer: two contrasting definitions. Permafrost Periglac 9:411–416CrossRefGoogle Scholar
  8. Christiansen HH, Etzelmüller B, Isaksen K, Juliussen H, Farbrot H, Humlum O, Johansson M, Ingeman-Nielsen T, Kristensen L, Hjort J, Holmlund P, Sannel ABK, Sigsgaard C, Åkerman HJ, Foged N, Blikra LH, Pernosky MA, Ødegård RS (2010) The thermal state of permafrost in the nordic area during the international polar year 2007–2009. Permafrost Periglac 21:156–181CrossRefGoogle Scholar
  9. Everdingen v Ed. (1998, revised 2005) Multi-language glossary of permafrost and related ground-ice terms. Natl Snow Ice Data Center, BoulderGoogle Scholar
  10. Frauenfeld OW, Zhang TJ, Barry RG (2004) Interdecadal changes in seasonal freeze and thaw depths in Russia. J Geophys Res 109:D05101. doi: 10.1029/2003JD004245 Google Scholar
  11. Frauenfeld OW, Zhang TJ, McCreight JL (2007) Northern Hemisphere freezing/thawing index variations over the twentieth century. Int J Climatol 27(1):47–63CrossRefGoogle Scholar
  12. Fyodorov-Davydov DG, Sorokovikov VA, Ostroumov VE, Kholodov AL, Mitroshin IA, Mergelov NS, Davydov SP, Zimov SA, Davydova AI (2004) Spatial and temporal observations of seasonal thaw in the Northern Kolyma Lowland. Polar Geogr 28(4):308–325CrossRefGoogle Scholar
  13. Gorbunov AP (2003) Wietchnaya merzlota gor. Ot ekvatora do poliarnych shirot. Al’.maty 122Google Scholar
  14. Guglielmin M, Vieira G (2014) Permafrost and periglacial research in Antarctica: new results and perspectives. Geomorphology 225:1–3. doi: 10.1016/j.geomorph.2014.04.005 CrossRefGoogle Scholar
  15. Harris SA (1987) Altitude trends in permafrost active layer thickness, Kluane Lake, YT. Arctic 40(3):179–183CrossRefGoogle Scholar
  16. Harris SA (2001) Twenty years of data on climate-permafrost-active layer variations at the lower limit of alpine permafrost, Marmot Basin, Jasper National Park, Canada. Geogr Ann A 83(1–2):1–13CrossRefGoogle Scholar
  17. Harris SA (2005) Evidence for mupltiple layers in the active layer in certain warm permafrost environments (Canada). Earth Cryosphere 9(4):3–12 (in Russian) Google Scholar
  18. Harris SA, Pedersen DE (1998) Thermal regimes beneath coarse blocky materials. Permafrost Periglac 9:107–120CrossRefGoogle Scholar
  19. Hinkel KM, Nelson FE (2003) Spatial and temporal patterns of active layer thickness at Circumpolar Active Layer Monitoring (CALM) sites in northern Alaska, 1995–2000. J Geophys Res 108:D28168. doi: 10.1029/2001JD000927 Google Scholar
  20. Hinkel KM, Paetzold F, Nelson FE, Bockheim JG (2001) Patterns of soil temperature and moisture in the active layer and upper permafrost at Barrow, Alaska: 1993–1999. Global Planet Change 29(3–4):293–309CrossRefGoogle Scholar
  21. Hollesen J, Elberling B, Jansson PE (2011) Future active layer dynamics and carbon dioxide production from thawing permafrost layers in Northeast Greenland. Global Change Biol 17(2):911–926CrossRefGoogle Scholar
  22. Ishikawa M, Sharkhuu N, Zhang Y, Kadota T, Ohata T (2005) Ground thermal and moisture conditions at the southern boundary of discontinuous permafrost, Mongolia. Permafrost Periglac 16:209–216CrossRefGoogle Scholar
  23. Jin HJ, Yu QH, Lü LZ, Guo DX (2007) Degradation of Permafrost in the Xing’anling Mountains, Northeastern China. Permafrost Periglac 18:245–258CrossRefGoogle Scholar
  24. Klene AE, Nelson FE, Hinkel KM (2013) Urban–rural contrasts in summer soil-surface temperature and active-layer thickness, Barrow, Alaska, USA. Polar Geogr 36(3):183–201CrossRefGoogle Scholar
  25. Koven CD, Ringeval B, Friedlingstein P, Ciais P, Cadule P, Khvorostyanov Krinner G, Tarnocai C (2011) Permafrost carbon-climate feedbacks accelerate global warming. Proc Natl Acad Sci USA 108(36):14769–14774CrossRefGoogle Scholar
  26. Li R, Zhao L, Ding YJ, Wu TH, Xiao Y, Du EJ, Liu G, Qiao YP (2012) Temporal and spatial variations of the active layer along the Qinghai-Tibet Highway in a permafrost region. Chinese Sci Bull 57(35):4609–4616CrossRefGoogle Scholar
  27. Luo DL, Jin HJ, Marchenko SS, Romanovsky VE (2014a) Distribution and changes of active layer thickness (ALT) and soil temperature (TTOP) in the source area of the Yellow River using the GIPL model. Sci China Earth Sci 57(8):1834–1845CrossRefGoogle Scholar
  28. Luo DL, Jin HJ, Lü LZ, Wu QB (2014b) Spatiotemporal characteristics of freezing and thawing of the active layer in the source areas of the Yellow River (SAYR). Chinese Sci Bull 59(24):3034–3035CrossRefGoogle Scholar
  29. Luo DL, Jin HJ, Jin R, Yang XG, Lü LZ (2014c) Spatiotemporal variations of climate warming in northern Northeast China as indicated by freezing and thawing indices. Quat Int 349:187–195CrossRefGoogle Scholar
  30. Marchenko SS, Gorbunov AP, Romanovsky VE (2007) Permafrost warming in the Tien Shan Mountains, Central Asia. Global Planet Change 56(3–4):311–327CrossRefGoogle Scholar
  31. Melnikov ES, Leibman MO, Moskalenko NG, Vasiliev AA (2004) Active-layer monitoring in the cryolithozone of West Siberia. Polar Geogr 28(4):267–285CrossRefGoogle Scholar
  32. Mishra U, Riley WJ (2014) Active-layer thickness across Alaska: comparing observation-based estimates with CMIP5 earth system model predictions. Soil Sci Soc Am J 78:894–902. doi: 10.2136/sssaj2013.11.0484 CrossRefGoogle Scholar
  33. Narita K, Harada K, Saito K, Sawada Y, Fukuda M, Tsuyuzaki S (2015) Vegetation and permafrost thaw depth 10 years after a tundra fire in 2002, Seward Peninsula. Alaska. Arctic Antarct Alp Res 47(3):547–559. doi: 10.1657/AAAR0013-031 CrossRefGoogle Scholar
  34. Nelson FE, Brown J, Lewkowicz A (1996) Taylor A (1996) Active layer protocol. In: Molau U, Mølgaard P (eds) ITEX Mannual, 2nd edn. International Tundra Experiment (ITEX), CopenhagenGoogle Scholar
  35. Nelson FE, Shiklomanov NI, Mueller GR, Hinkel KM (1997) Estimating active-layer thickness over a large region: Kuparuk River Basin, Alaska, U.S.A. Arc Antarct Alp Res 29(4):367–378CrossRefGoogle Scholar
  36. Nelson FE, Hinkel KM, Shiklomanov NI, Mueller GR, Miller LL, Walker DA (1998) Active-layer thickness in north-central Alaska, systematic sampling, scale, and spatial autocorrelation. J Geophys Res 103(D22):28963–28973CrossRefGoogle Scholar
  37. Nelson FE, Shiklomanov NI, Mueller GR (1999) Variability of active-layer thickness at multiple spatial scales, north-central Alaska, USA. Arc Antarct Alp Res 31(2):179–186CrossRefGoogle Scholar
  38. Nixon FM (2000) Thaw-depth monitoring. In: The physical environment of the Mackenzie Valley, Northwest Territories: a base line for the assessment of environmental change. Geol Survey Can Bull, vol 547, pp 119–126Google Scholar
  39. Oelke C, Zhang TJ, Serreze MC (2004) Modeling evidence for recent warming of the Arctic soil thermal regime. Geophys Res Lett 31:L07208. doi: 10.1029/2003GL019300 CrossRefGoogle Scholar
  40. Park H, Fedorov AN, Sherstiukov AB, Iijima Y, Ohata T (2013) The influence of climate and hydrological variables on opposite anomaly in active-layer thickness between Eurasian and North American watersheds. Cryosphere 7(2):631–645. doi: 10.5194/tc-7-631-2013 CrossRefGoogle Scholar
  41. Pastick NJ, Jorgenson MT, Wylie BK, Rose JR, Rigge M, Walvoord MA (2014) Spatial variability and landscape controls of near-surface permafrost within the Alaskan Yukon River Basin. J Geophys Res Biogeosci 119:1244–1265. doi: 10.1002/2013JG002594 CrossRefGoogle Scholar
  42. Romanovsky VE, Osterkamp TE (1997) Thawing of the active layer on the Coastal Plain of the Alaskan Arctic. Permafrost Periglac 8:1–22CrossRefGoogle Scholar
  43. Sharkhuu N (1998) Trends of permafrost development in the Selenge River Basin, Mongolia. In: Yellowknife NWT, Lewkowicz AG, Allard M (eds) Proceedings seventh international conference on Permafrost, Collection Nordicana 57. Universite Laval, Quebec, pp 979–985Google Scholar
  44. Sharkhuu N (2003) Recent changes in the permafrost of Mongolia. In: Phillips M, Springman SM, Arenson LU (eds) permafrost. Swets & Zeitlinger, Lisse, pp 1029–1034Google Scholar
  45. Sharkhuu A, Sharkhuu N, Etzelmüller B, Heggem ESF, Nelson FE, Shiklomanov NI, Goulden CE, Brown J (2007) Permafrost monitoring in the Hovsgol mountain region, Mongolia. J Geophys Res 112:F02S06. doi: 10.1029/2006JF000543 Google Scholar
  46. Shiklomanov NI, Streletskiy DA, Nelson FE, Hollister RD, Romanovsky VE, Tweedie CE, Bockheim JG, Brown J (2010) Decadal variations of active-layer thickness in moisture-controlled landscapes, Barrow, Alaska. J Geophys Res Biogeosci 115:G00I04. doi: 10.1029/2009JG001248 Google Scholar
  47. Shiklomanov NI, Streletskiy DA, Nelson FE (2012) Northern Hemisphere Component of the Global Circumpolar Active Layer Monitoring (CALM) Program. In: Hinkle KM (ed) Proceedings of the Tenth International Conference on Permafrost, Salekhard, Russia, 25–29 Jun 2012, vol 1. The Northern Publisher, Salekhard, pp 377–382Google Scholar
  48. Shiklomanov NI, Streletskiy DA, Nelson FE (2013) Active layer thickness and thaw subsidence in permafrost terrain: results from long-term observations near Barrow, Alaska. Abstract GC14A-04, Fall Meetings, AGU, San Francisco. http://adsabs.harvard.edu/abs/2012AGUFMGC14A.04S
  49. Strauss J, Schirrmeister L, Wetterich S, Borchers A, Davydov SP (2012) Grain-size properties and organic-carbon stock of Yedoma Ice Complex permafrost from the Kolyma lowland, northeastern Siberia. Global Biogeochem Cycles 26:GB3003. doi: 10.1029/2011GB004104 CrossRefGoogle Scholar
  50. Streletskiy DA, Shiklomanov NI, Nelson FE (2012) Spatial variability of permafrost active-layer thickness under contemporary and projected climate in Northern Alaska. Polar Geogr 35(2):95–116CrossRefGoogle Scholar
  51. Wu QB, Niu FJ (2013) Permafrost changes and engineering stability in Qinghai-Xizang Plateau. Chin Sci Bull 58(10):1079–1094CrossRefGoogle Scholar
  52. Wu QB, Zhang TJ (2010) Changes in active layer thickness over the Qinghai-Tibetan Plateau from 1995 to 2007. J Geophys Res 115:D09107. doi: 10.1029/2009JD012974 Google Scholar
  53. Wu TH, Wang QX, Watanabe M, Chen J, Battogtokh D (2008) Mapping vertical profile of discontinuous permafrost with ground penetrating radar at Nalaikh depression, Mongolia. Environ Geol 56(8):1577–1583CrossRefGoogle Scholar
  54. Wu QB, Zhang TJ, Liu YZ (2012) Thermal state of the active layer and permafrost along the Qinghai-Xizang (Tibet) Railway from 2006 to 2010. Cryosphere 6:607–612CrossRefGoogle Scholar
  55. Wu QB, Hou YD, Yun HB, Liu YZ (2015) Changes in active-layer thickness and near-surface permafrost between 2002 and 2012 in alpine ecosystems, Qinghai-Xizang (Tibet) Plateau, China. Global Planet Change 124:149–155CrossRefGoogle Scholar
  56. Zamolodchikov DG, Kotov AN, Karelin DV, Razzhivin VY (2004) Active-layer monitoring in Northeast Russia: spatial, seasonal, and interannual variability. Polar Geogr 28(4):286–307CrossRefGoogle Scholar
  57. Zhang TJ, Osterkamp TE, Stamnes K (1997) Effects of climate on the active layer and permafrost on the North Slope of Alaska, U.S.A. Permafrost Periglac 8:45–67CrossRefGoogle Scholar
  58. Zhang TJ, Frauenfeld OW, Serreze MC, Etringer A, Oelke C, McCreight J, Barry RG, Gilichinsky D, Yang DQ, Ye H, Ling F, Chudinova S (2005) Spatial and temporal variability in active layer thickness over the Russian Arctic drainage basin. J Geophys Res 110:D16101. doi: 10.1029/2004JD005642 CrossRefGoogle Scholar
  59. Zhang TJ, Barry RG, Knowles K, Heginbottom JA, Brown J (2008) Statistics and characteristics of permafrost and ground-ice distribution in the northern hemisphere. Polar Geogr 31(1–2):47–68CrossRefGoogle Scholar
  60. Zhao L, Cheng GD, Li SX, Zhao XM, Wang SL (2000) Thawing and freezing processes of active layer in Wudaoliang region of Tibetan Plateau. Chin Sci Bull 45(23):2181–2187CrossRefGoogle Scholar
  61. Zhao L, Wu QB, Marchenko SS, Sharkhuu N (2010) Thermal state of permafrost and active layer in Central Asia during the International Polar Year. Permafrost Periglac 21:198–207CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Dongliang Luo
    • 1
    Email author
  • Qingbai Wu
    • 1
  • Huijun Jin
    • 1
  • Sergey S. Marchenko
    • 1
    • 2
  • Lanzhi Lü
    • 1
  • Siru Gao
    • 1
  1. 1.State Key Laboratory of Frozen Soil Engineering, Cold and Arid Regions Environmental and Engineering Research InstituteChinese Academy of SciencesLanzhouChina
  2. 2.Geophysical InstituteUniversity of Alaska FairbanksFairbanksUSA

Personalised recommendations