Advertisement

Biogeochemical coefficients as indicators of nutrient element sorption in jerivá (Syagrus romanzoffiana (Chamisso) Glassman), a palm tree species from Brazil

  • Rosely Aparecida Liguori ImbernonEmail author
  • Rejane Gonçalves Rocha
Original Article
  • 73 Downloads

Abstract

The absorption coefficients usually applied to biogeochemical prospection may provide information on the substrate (soil) in natural and contaminated ecosystems, since the chemical composition of the plants tends to reflect the availability of the elements. The biogeochemical coefficients could be a parameter to assess the bioaccumulation potential of a flora species, interactions involving the soil–plant system, and presence or absence of contaminants, such as metals. This study applies the biological absorption coefficient, the temporal absorption coefficient, and the acropetal coefficient as parameters to evaluate the differential absorption in the selected representative species. The Syagrus romanzoffiana (Chamisso) Glassman chosen as a representative species in this study is a palm tree species commonly known in Brazil as “palmeira jerivá” (jerivá palm tree). The representative species is widely used in landscaping and vegetation restoration in urban areas. It shows major regional dispersion and is endemic in South America. The results indicate that jerivá palm tree could be a useful indicator of soil contamination in tropical areas.

Keywords

Biogeochemycal coefficients Phytomonitoring Syagrus romanzoffiana Jerivá palm tree 

References

  1. Bernacci LC, Martins FR, Santos FAM (2008) Estrutura de estádios ontogenéticos em população nativa de palmeira Syagrus romansoffiana (Cham.). Glassman (Arecaceae). Acta Botanica Brasilica, São Paulo 22(1):119–130CrossRefGoogle Scholar
  2. Bowen JE (1969) Absorption of copper, zinc, and manganese by sugarcane leaf tissue. Plant Physiol 44:255–261CrossRefGoogle Scholar
  3. Brooks RR (ed) (1983) Biological methods of prospecting for minerals. Wiley, New YorkGoogle Scholar
  4. Brooks RR (ed) (2000) Plants that hyperaccumulate heavy metals: their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining. CAB International, Oxford, New YorkGoogle Scholar
  5. Chaney JC, Brown JC, Tiffin LO (1972) Obligatory reduction of ferric chelates in iron uptake by soybeans. Plant Physiol 50:208–213CrossRefGoogle Scholar
  6. Elzam OE, Hodges TK (1967) Calcium inhibition of potassium absorption in corn roots. Plant Physiol 42:1483–1488CrossRefGoogle Scholar
  7. Gaspar T, Franck T, Bisbis B, Kevers G, Jouve L, Haussman JL, Dommes J (2002) Concepts in plant stress physiology: application to plant tissue culture. Plant Growth Regul 37(3):263–285CrossRefGoogle Scholar
  8. Grimme LH, Porra RJ (1974) The regreening of the nitrogen deficient ChloreIla fusca I. The development of photosynthetic activity during the synchronous regreening of nitrogen deficient Chlorella. Biochem Biophys Res Commun 49:1617–1623CrossRefGoogle Scholar
  9. Henriques AR (2005) O uso do sphagnum no biomonitoramento da poluição aérea por cádmio. Universidade Federal de Pelotas, Pelotas, p 79Google Scholar
  10. Lima e Cunha MC, Pereira VP, Menegotto E, Bastos Neto AC, Oliveira LD, Formoso MLL (2008) Biogeochemical behavior of Ampeloziyphus amazonicus Ducke in the Pitinga mining district, Amazon. Brazil Env Geol 55(6):1355–1362CrossRefGoogle Scholar
  11. Moreno FN, Chris WN, Anderson CWN, Brett H, Robinson BH, Meech JÁ, Sígolo JB (2008) Eco-gold gerando retorno econômico na remediação de passivos ambientais por meio da fitoextração. In: Morei E, Rodrigues D, Anfreas N (eds) Áreas contaminadas: remediação e revitalização, 1st edn. Ed.Signus, São Paulo, pp 79–83Google Scholar
  12. Mukhopadhyay MJ, Sharma A (1991) Manganese in cell metabolism of higher plants. Bot Rev 57:117–149CrossRefGoogle Scholar
  13. Reimann C, Äyräs M, Chekushin IV, Bogatyrev RB, Cariatat P (1998) Environmental geochemical atlas of the central barents region, Geological Survey of Norway, Special PublicationGoogle Scholar
  14. Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53(372):1351–1365CrossRefGoogle Scholar
  15. Setenac H, Grignon C (1985) Effeet of pH on orthophosphate uptake by corn toots. Plant Physiol 77:136–144CrossRefGoogle Scholar
  16. Shepard FP (1954) Nomenclature based on sand-silt-clay ratios. J Sediment Petrol 24:151–158CrossRefGoogle Scholar
  17. Souza LH, Novais RF, Alvarez VHV, Villani EMA (2010) Efeito do pH do solo rizosférico e não rizosférico de plantas de soja inoculadas com Bradyrhizobium japonicum na absorção de boro, cobre, ferro, manganês e zinco. Revista Brasileira de Ciências do Solo 34:1641–1652CrossRefGoogle Scholar
  18. Sposito G (1989) The chemistry of soils. Oxford University Press, New York, p 277Google Scholar
  19. Valadares JMA, Camargo OC (1981) Manganês em solos do estado de São Paulo. In: Congresso Brasileiro de Ciência do Solo, 17, Bol. Res 85Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Rosely Aparecida Liguori Imbernon
    • 1
    • 2
    Email author
  • Rejane Gonçalves Rocha
    • 1
  1. 1.Graduate Program in Mineral Resources and Hydrogeology, Institute of GeosciencesUniversity of São Paulo (USP)São PauloBrazil
  2. 2.School of Arts, Sciences and Humanities, EACHUniversity of São Paulo (USP)São PauloBrazil

Personalised recommendations