Advertisement

Environmental Earth Sciences

, 75:343 | Cite as

Hydrogeophysical characterization of the porous and fractured media (chalk aquifer in the Beauvais, France)

  • Lahcen Zouhri
  • Pascale Lutz
Original Article

Abstract

This study is aimed to investigate the principal aquifer in the northern part of Paris (Beauvais region) which is materialized by the Senonian chalk deposits. This aquifer supplies water to the principal region in the north and in particular the Picardie and Artois region. In order to characterize the chalk aquifer of this area, a wide pluridisciplinary research program based on the well logging and near surface geophysics surveys (seismic refraction and electrical resistivity tomography) is in progress. These surveys were carried out within the experimental site of the LaSalle Beauvais Polytechnic Institute and its hydrogeological boreholes. The heterogeneous distribution of the seismic velocities in the complex aquifer and of the physico-chemical properties (conductivity, temperature and gamma-ray) of the chalk aquifer were revealed by the analysis and the interpretation of the seismic lines and data logging, which are linked to changes in lithology and water properties at the place of the hydrogeological wells. The fracturation investigation identified during this work makes it possible to consider the relationship between the degree of the fracturation and the variation of the hydrogeological parameters (hydraulic conductivity, porosity) and physico-chemical parameters (electrical conductivity and temperature). The interface between vadose and saturated zones was assessed by the measurement of the water conductivity, the variation of the average temperature and by the cuttings analysis in particular at the level of the capillary fringe of the chalk aquifer. The presence of the saturated depth is confirmed by the piezometric investigation. The interpretation of the well logging by using gamma-ray is consistent with the seismic and electrical analysis: the three principal layers are composed of silt and clay with cherts, soft chalk, as well as hard chalk.

Keywords

Chalk aquifer Seismic and electrical sections Well logging Conductivity Temperature Gamma-ray Experimental site Beauvais France 

Notes

Acknowledgments

Anonymous reviewers, The Editor-in-Chief, the Associate Editor and the Managing Editor are thanked for their constructive reviews and comments, which improved the manuscript significantly.

References

  1. Allen DJ, Brewerton LJ, Coleby LM, Gibbs BR, Lewis MA, MacDonald AM, Wagstaff SJ, Williams AT (1997) The physical properties of major aquifers in England and Wales. British Geological Survey Technical Report WD/97/34. Environment Agency R&D Publication, p 312Google Scholar
  2. Antonellini M, Aydin A (1994) Effect of faulting on fluid-flow in porous sandstones petrophysical properties. Bull Am Assoc Pet Geol 78:355–377Google Scholar
  3. Aquilina L, Brach M (1995) Characterization of Soultz hydrochemical system: WELCOM (Well Chemical On-line Monitoring) applied to deepening of GPK1 borehole. Geotherm Sci Technol 4(4):239–251Google Scholar
  4. Audouin O, Bodin J, Porel G, Bourbiaux B (2008) Flowpath structure in a limestone aquifer: multi-borehole logging investigations at the hydrogeological experimental site of Poitiers, France. Hydrogeol J 16:939–950CrossRefGoogle Scholar
  5. Barker JA (1993) Modelling groundwater flow and transport in the Chalk. In: Downing RA, Price M, Jones GP (eds) The hydrogeology of the chalk of North-West Europe. Clarendon Press, Oxford, pp 59–66Google Scholar
  6. Beccaletto L, Hanot F, Serrano O, Marc S (2011) Overview of the subsurface structural pattern of the Paris Basin (France): insights from the reprocessing and interpretation of regional seismic lines. Mar Pet Geol 28:861–879CrossRefGoogle Scholar
  7. Bloomfield J (1999) Characterisation of hydrogeologically significant fracture distributions in the Chalk: an example from the Upper Chalk of southern England. J Hydrol 184(3–4):355–379Google Scholar
  8. Boucher M, Favreau G, Descloitres M, Vouillamoz J-M, Massuel S, Nazoumou Y, Cappelaere B, Legchenko A (2009) Contribution of geophysical surveys to groundwater modelling of a porous aquifer in semiarid Niger: an overview. Comptes Rendus Geosci 341:800–809CrossRefGoogle Scholar
  9. BRGM (2015) La craie du crétacé. Système d’information pour la gestion des eaux souterraines en Nord-Pas de Calais. Site web du brgmGoogle Scholar
  10. Dahlin T, Owen R (1998) Geophysical investigations of alluvial aquifers in Zimbabwe. Proceedings of the IV Meeting of the Environmental and Engineering Geophysical Society (European Section), Barcelona, Spain, pp 151–154Google Scholar
  11. Dahlin T (2001) The development of DC resistivity imaging techniques. Comput Geosci 27(9):1019–1029CrossRefGoogle Scholar
  12. Daily W, Ramirez A, Binley A, LaBrecque D (2004) Electrical resistance tomography. Lead Edge 23:438–442CrossRefGoogle Scholar
  13. Dercourt J, Gaetani M, Vrielinck B, Barrier E, Biju-Duval B, Brunet M-F, Cadet J-P, Crasquin S, Sandulescu M (2000) Atlas peri-Tethys, Palaeogreographical maps CCGM/CGMM, Paris, 24 maps and explanatory notes, I-XX, 269 pGoogle Scholar
  14. Derely T, Maceron A (2014) Etude des relations écoulements/fracturations dans le fonctionnement hydraulique de la nappe de la Craie (Bassin du Thérain). Rapport, 137 pGoogle Scholar
  15. Descloitres M, Ruiz L, Sekhar M, Legchenko A, Braun JJ, Mohan Kumar MS, Subramanian S (2008) Characterization of seasonal local recharge using electrical resistivity tomography and magnetic resonance sounding. Hydrol Process 22(3):384–394CrossRefGoogle Scholar
  16. Desper DB, Link CA, Nelson PN (2015) Accurate water-table depth estimation using seismic refraction in areas of rapidly varying subsurface conditions. Near Surface Geophysics 13:455–465CrossRefGoogle Scholar
  17. Diment WH (1967) Thermal regime of a large diameter borehole: instability of the water column and comparison of air- and water-filled conditions. Geophysics 32(4):720–726CrossRefGoogle Scholar
  18. Dobrin MB (1976) Introduction to geophysical prospecting. McGraw-Hill Book Co., New YorkGoogle Scholar
  19. Domenico PA, Schwartz FW (1998) Physical and chemical hydrogeology. Wiley, New York, p 505Google Scholar
  20. Flathe H (1955) Possibilities and limitations in applying geoelectrical methods to hydrogeological problems in the coastal areas of Northwest Germany. Geophys Prospect 3:95–110CrossRefGoogle Scholar
  21. Grelle G, Guadagno FM (2009) Seismic refraction methodology for groundwater level determination: “Water seismic inde”. J App Geophys 68(3):301–320CrossRefGoogle Scholar
  22. Haeni FP (1986) Application of seismic-refraction methods in groundwater modeling studies in New England. Geophysics 51(2):236–249CrossRefGoogle Scholar
  23. Hanich L, Zouhri L, Dinger J (2011) Characterization of the Cretaceous aquifer. Structure of the Meskala region of the Essaouira Basin, Morocco, for groundwater resources planning. J Afr Earth Sc 59(2–3):313–322CrossRefGoogle Scholar
  24. Hinojosa-Prieto HR, Hinzen K (2015) Seismic velocity model and near-surface geology at Mycenaean Tiryns, Argive Basin, Peloponnese, Greece. In: 21st European Meeting of Environmental and Engineering Geophysics—Near Surface Geoscience 2015, Turin, Italy, 6–10 Sept 2015Google Scholar
  25. Ikeda R, Kajiwara T, Omura K, Hickman S (2008) Physical rock properties in and around a conduit zone by well-logging in the Unzen Scientific Drilling Project, JapanGoogle Scholar
  26. Jorgensen LN, Andersen PM (1991) Integrated study of the Kraka Field. Society of Petroleum Engineers. Offshore Europe, Aberdeen, UK, 3–6 Sept, 14 p. doi: 10.2118/23082-MS)
  27. Karastathis VK, Karmis P, Novikova T, Roumelioti Z, Gerolymatou E, Papanastassiou D, Liakopoulos S, Tsombos P, Papadopoulos GA (2010) The contribution of geophysical techniques to site characterization and liquefaction risk assessment: case study of Nafplion City, Greece. J App Geophys 72:194–211CrossRefGoogle Scholar
  28. Karl L, Fechner T, Schevenels M, François S, Degrande G (2013) Geotechnical characterization of a river dyke by surface waves. Near Surf Geophys 9:515–527Google Scholar
  29. Kemna A, Kulessa B, Vereecken H (2002) Imaging and characterisation of subsurface solute transport using electrical resistivity tomography (ERT) and equivalent transport models. J Hydrol 267(3–4):125–146CrossRefGoogle Scholar
  30. Khalil MH, Hanafy SM (2008) Engineering applications of seismic refraction method: a field example at Wadi Wardan, Northeast Gulf of Suez, Sinai, Egypt. J Appl Geophys 65(3–4):132–141CrossRefGoogle Scholar
  31. Koch K, Wenninger J, Uhlenbrook S, Bonell M (2009) Joint interpretation of hydrological and geophysical data: electrical resistivity tomography results from a process hydrological research site in the Black Forest Mountains, Germany. Hydrol Process 23(10):1501–1513CrossRefGoogle Scholar
  32. Loke MH, Barker RD (1996) Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophys Prospect 44:131–152CrossRefGoogle Scholar
  33. Lutz P, Zouhri L (2015) A multidisciplinary hydrogeophysical approach applied to the chalk aquifer using MRS (North of France). Near surface geoscience 2015, Turin, Italy, 6–10 Sept 2015 (Communication avec acte). doi: 10.3997/2214-4609.201413705
  34. Lysne P, and Henfling J (1994) Design of a pressure/temperature logging system for geothermal applications. U.S. Department of Energy Geothermal Program Review XII, pp 155–161Google Scholar
  35. Magnin O (2007) Cours de sismique réfraction appliquée. Master M2P_ES. Université de Grenoble, p 50Google Scholar
  36. Mégnien C (1980) Synthèse géologique du Bassin de Paris, I, Stratigraphie et paléogéographie. ISBN 2_7159-5007-1, Edition du BRGM. 3 volumesGoogle Scholar
  37. Muldoon MA, Toni Simo JA, Bradbury KR (2001) Correlation of hydraulic conductivity with stratigraphy in a fractured-dolomite aquifer, northeastern Wisconsin, USA. Hydrogeol J 9:570–583CrossRefGoogle Scholar
  38. Murray C, Keiswetter D, Rostosky E (1999). Seismic Refraction case studies at environmental sites. In: 12th EEGS Symposium on the application of geophysics to engineering and environmental problems, EEGSGoogle Scholar
  39. Paillet FL, Reese RS (2000) Integrating borehole logs and aquifer tests in aquifer characterization. Ground Water 38:713–725CrossRefGoogle Scholar
  40. Pham VN, Boyer D, Le Mouël J-L, Nguyen T-K-T (2002) Hydrogeological investigation in the Mekong Delta around Ho-Chi-Minh City (South Vietnam) by electric tomography. Comptes Rendus Geosci 3345(10):733–740CrossRefGoogle Scholar
  41. Pomerol C (1978) Paleogeographic and structural evolution of the Paris Basin, from the Precambrian to the present day, in relation to neighboring regions. Geologie En Mijnbouw Journal of Geosciences 57:533–543Google Scholar
  42. Price M (1987) Fluid flow in the Chalk of England. In: Goff JC, Williams BPJ (eds) Fluid Flow in Sedimentary Basins and Aquifers, vol 34. Geological Society, London, Special Publications, pp 141–156Google Scholar
  43. Price M, Downing MA, Edmunds WM (1993) The chalk as an aquifer. In: Downing RA, Price M, Jones GP (eds) The hydrogeology of the chalk of the north-west Europe. Clarendon Press, Oxford, UK, pp 35–58Google Scholar
  44. Price M, Low RG, McCann C (2000) Mechanisms of water storage and flow in the unsaturated zone of the Chalk aquifer. J Hydrol 233:54–71CrossRefGoogle Scholar
  45. Rings J, Hauck C (2009) Reliability of resistivity quantification for shallow subsurface water processes. J Appl Geophys 68(3):404–416CrossRefGoogle Scholar
  46. Rogers RB, Kean WF (1980) Monitoring ground water contamination at a fly ash disposal site using surface resistivity methods. Ground Water 18(5):472–478CrossRefGoogle Scholar
  47. Roux J-C, Tirat M (1969) Carte hydrogéologique de la France—Beauvais (no. 102). BRGM 1/50 000Google Scholar
  48. Sakuma S, Kajiwara T, Nakada S, Uto K, Shimizu H (2008) Drilling and logging results of USDP-4 penetration into the volcanic conduit of Unzen Volcano, Japan. J Volcanol Geotherm Res 175:1–12. doi: 10.1016/j.jvolgeores.2008.03.039 CrossRefGoogle Scholar
  49. Samyn K, Travelletti J, Bitri A, Grandjean G, Malet JP (2012) Characterization of a landslide geometry using 3D seismic refraction traveltime tomography: the La Valette landslide case history. J App Geophys 86:120–132CrossRefGoogle Scholar
  50. Schürch M, Buckley D (2002) Integrating geophysical and hydrochemical borehole log measurements to characterize the Chalk aquifer, Berkshire, United Kingdom. Hydrogeol J 10:610–627CrossRefGoogle Scholar
  51. Slater L, Binley A, Daily W, Johnson R (2000) Cross-hole electrical imaging of a controlled saline tracer injection. J Appl Geophys 44(2–3):85–102CrossRefGoogle Scholar
  52. Sureau JF (1993) Forage Morte-Mérie 1 - Rapport d’exécution et données préliminaires. Document BRGM, 229: 153 pGoogle Scholar
  53. Sureau JF, Fritz B, Aquilina L (1993) Diagraphie et suivi géochimiques des fluides en cours de forage. Résultats préliminaires du forage Balazuc-1, Ardèche. Programme Géologie Profonde de la France. Comptes Rendus de l’Académie des Sciences 316, II:1279–1286Google Scholar
  54. Telford WM, Geldart LP, Sheriff RE, Keys DA (1976) Applied geophysics. Cambridge University Press, CambridgeGoogle Scholar
  55. Tirat M, Belkessa R (1969) Avec la collaboration de Fromager J.P. Données géologiques et hydrogéologiques acquises à la date du 31-12-67 sur le territoire de la feuille topographique au 1/50 000 Beauvais (no. 102) (Oise). BRGM, 92 pGoogle Scholar
  56. Urban JB, Pasquarell GC (1992) Combining well packer tests and seismic refraction surveys for hydrologic characterization of fractured rock. Ground Water Manag 11:645–654Google Scholar
  57. USGS (2006).Integrated Geophysical investigation of preferential flow paths at the Former Tyson Valley Powder Farm. Prepared with the U.S. Army Corps of Engineers Kansas City District, Scientific investigations report 2008-5212Google Scholar
  58. Van PV, Park SK, Hamilton P (1991) Monitoring leaks from storage ponds using resistivity methods. Geophysics 56:1267–1270CrossRefGoogle Scholar
  59. Vouillamoz JM, Descloitres M, Toe G, Legchenko A (2005) Characterization of crystalline basement aquifers with MRS: comparison with boreholes and pumping tests data in Burkina Faso. Near Surf Geophys 3:107–111Google Scholar
  60. Vuataz FD (1987) Diagraphie et suivi géochimiques des eaux souterraines: exemple de sondages dans le socle cristallin. Géothermie Actualités 4(2):25–33Google Scholar
  61. Wisian KW, Blackwell DD, Bellani S, Henfling JA, Normann RA, Lysne PC, Förster A, Schrötter J (1998) Field comparison of conventional and new technology temperature logging systems. Geothermics 27(2):131–141CrossRefGoogle Scholar
  62. Wright PM, Ward SH, Ross HP, West RC (1985) State-of-the-art geophysical exploration for geothermal resources. Geophysics 50:2666–2699CrossRefGoogle Scholar
  63. Younger PL (2007) Groundwater in the environment: an introduction. Blackwell, London, p 390. ISBN 1-4051-2143-2Google Scholar
  64. Zghibi A, Mezougui A, Zouhri L, Tarhouni J (2014) Interaction between groundwater and seawater in the coastal aquifer of Cap-Bon in the semi-arid systems (north-east of Tunisia). Carbonates Evaporites 29(3):309–326CrossRefGoogle Scholar
  65. Zouhri L (2002) Hétérogénéité des cotes piézométriques et structurations en blocs dans les aquifères côtiers. Hydrol Sci 47(6):969–981Google Scholar
  66. Zouhri L, Lutz P (2010) A comparison of peak and plate electrodes in electrical resistivity tomography: application to the chalky groundwater of the Beauvais aquifer (northern part of the Paris basin, France). Hydrol Processes 24(21):3040–3052Google Scholar
  67. Zouhri L, Gorini C, Mania J, Deffontaines B, Zerouali A (2004) Spatial distribution of resistivity in the hydrogeological systems, and identification of the catchment area in the Rharb basin, Morocco. Hydrol Sci J 49(3):387–398CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.HydrISE, Institut Polytechnique LaSalle BeauvaisBeauvaisFrance

Personalised recommendations