Advertisement

Influence of microtopography on active layer thaw depths in Qilian Mountain, northeastern Tibetan Plateau

  • Tanguang GaoEmail author
  • Tingjun Zhang
  • Xudong Wan
  • Shichang Kang
  • Mika Sillanpää
  • Yanmei Zheng
  • Lin Cao
Original Article

Abstract

Climate warming over the Tibetan Plateau has been thickening the active layer, the most significant indicator of the permafrost system. This study evaluates the influence of microtopography on active layer thaw depth in recent years at Eboling basin of the eastern Qilian Mountain, northeastern Tibetan Plateau. Thaw depths were measured at microtopographic levels in 2012, 2013, and 2014, respectively. Watershed-scale sampling was used to estimate the influence of various morphologies on the active layer, while a second sampling scheme to examine the variations in the frost table height along six short transects. A third sampling scheme used spatial autocorrelation analysis in a regular grid at 10 × 10 m intervals. The results documented that microtopography (elevation, microrelief, surface configuration, and slope) played a pivotal role on the active layer thickness of mountainous permafrost in the study area. Active layer became thinner in depressions, which was contrary to most of Arctic sites. Spatial autocorrelation analysis elucidated that the dominant topographic factors controlled the changes of active layer thickness. These factors exerted the majority of control over the spatial variations of the active layer. The results can help researchers or engineers to roughly estimate the probable influence of micromorphology on the changes in thickness of the active layer in mountainous permafrost regions in the Tibetan Plateau.

Keywords

Active layer thickness Mountain permafrost Microtopography Tibetan plateau 

Notes

Acknowledgments

This study was supported by the National Natural Science Foundation of China (91325202; 41501063), and the Global Change Research Program of China (2013CBA01802). We appreciate the reviewers, whose valuable comments were helpful in improving the manuscript. We also thank the staff of Heihe Station for their observations.

References

  1. Bi Y, Xie H, Huang C, Ke C (2015) Snow cover variations and controlling factors at Upper Heihe River Basin, Northwestern China. Remote Sens 7(6):6741–6762CrossRefGoogle Scholar
  2. Bonnaventure PP (2013) The active layer: a conceptual review of monitoring, modelling techniques and changes in a warming climate. Prog Phys Geogr 37(3):352–376. doi: 10.1177/0309133313478314 CrossRefGoogle Scholar
  3. Chen S, Liu W, Qin X, Liu Y, Zhang T, Chen K, Hu F, Ren J, Qin D (2012) Response characteristics of vegetation and soil environment to permafrost degradation in the upstream regions of the Shule River basin. Environ Res Lett. doi: 10.1088/1748-9326/7/4/045406 Google Scholar
  4. Cheng G (2004) Influences of local factors on permafrost occurrence and their implications for Qinghai-Xizang Railway design. Sci China-Earth Sci 47(8):704–709CrossRefGoogle Scholar
  5. Chou YL, Yu S, Wei ZM (2008) Calculation of temperature differences between the sunny slopes and the shady slopes along railways in permafrost regions on Qinghai-Tibet Plateau. Cold Regions Sci Tech 53(3):346–354CrossRefGoogle Scholar
  6. Cliff AD, Ord JK (1981) Spatial processes: models & applications. Pion, LondonGoogle Scholar
  7. Dimitrov DD, Grant RF, Lafleur PM, Humphreys ER (2010) Modeling peat thermal regime of an ombrotrophic peat land with Hummock-Hollow microtopography. Soil Sci Soc Am J 74(4):1406–1425CrossRefGoogle Scholar
  8. Fyodorov-Davydov D, Kholodov A, Ostroumov V, Kraev G, Sorokovikov V, Davudov S, Merekalova A (2008) Seasonal thaw of soils in the North Yakutian ecosystems. In: Kane DL, Hinkel KM (eds) 9th international conference on permafrost, pp 481–486Google Scholar
  9. Gamon JA, Kershaw GP, Williamson S, Hik DS (2012) Microtopographic patterns in an arctic baydjarakh field: do fine-grain patterns enforce landscape stability? Environ Res Lett 7(1):015502. doi: 10.1088/1748-9326/7/1/015502 CrossRefGoogle Scholar
  10. Gangodagamage C, Rowland JC, Hubbard SS, Brumby SP, Liljedahl AK, Wainwright H, Wilson CJ, Altmann GL, Dafflon B, Peterson J, Ulrich C, Tweedie CE, Wullschleger SD (2014) Extrapolating active layer thickness measurements across Arctic polygonal terrain using LiDAR and NDVI data sets. Water Resour Res 50(8):6339–6357CrossRefGoogle Scholar
  11. Gomersall CE, Hinkel KM (2001) Estimating the variability of active-layer thaw depth in two physiographic regions of northern Alaska. Geogr Anal 33(2):141–155CrossRefGoogle Scholar
  12. Haeberli W (2013) Mountain permafrost: research frontiers and a special long-term challenge. Cold Regions Sci Tech 96:71–76CrossRefGoogle Scholar
  13. Hinkel KM, Nelson FE (2003) Spatial and temporal patterns of active layer thickness at Circumpolar Active Layer Monitoring (CALM) sites in northern Alaska, 1995–2000. J Geophys Res 108(D2):13. doi: 10.1029/2001jd000927 CrossRefGoogle Scholar
  14. Hinzman LD, Kane DL, Gieck RE, Everett KR (1991) Hydrlogic and thermal properties of the active layer in the Alaskan Arctic. Cold Regions Sci Tech 19(2):95–110CrossRefGoogle Scholar
  15. Hu X, Pan B, Kirby E, Li QY, Geng HP, Chen JF (2010) Spatial differences in rock uplift rates inferred from channel steepness indices along the northern flank of the Qilian Mountain, northeast Tibetan Plateau. Chin Sci Bull 55(27–28):3205–3214CrossRefGoogle Scholar
  16. Hugelius G, Virtanen T, Kaverin D, Pastukhov A, Rivkin F, Marchenko S, Romanovsky V, Kuhry P (2011) High-resolution mapping of ecosystem carbon storage and potential effects pf permafrost thaw in periglacial terrain, European Russian Arctic. J Geophys Res. doi: 10.1029/2010JG001606 Google Scholar
  17. Jin X, Zhang L, Gu J, Zhao C, Tian J, He C (2015) Modelling the impacts of spatial heterogeneity in soil hydraulic properties on hydrological process in the upper reach of the Heihe River in the Qilian Mountains, Northwest China. Hydrol Process 29(15):3318–3327CrossRefGoogle Scholar
  18. Kokelj S, Burn C, Tarnocai C (2007) The structure and dynamics of earth hummocks in the subarctic forest near Inuvik, Northwest Territories, Canada. Arct Antarct Alp Res 39(1):99–109CrossRefGoogle Scholar
  19. Koven CD, Ringevai B, Friedlingstein P, Ciais P, Cadule P, Khvorostyanov D, Krinner G, Tarnocai C (2011) Permafrost carbon-climate feedbacks accelerate global warmong. PNAS 108(36):14769–14774. doi: 10.1073/pnas.1103910108 CrossRefGoogle Scholar
  20. Lewkowicz AG, Ednie M (2004) Probability mapping of mountain permafrost using the BTS method, Wolf Creek, Yukon Territory, Canada. Permafr Periglac Proc 15(1):67–80CrossRefGoogle Scholar
  21. Li Z, Xu Z, Shao Q, Yang J (2009) Parameter estimation and uncertainty analysis of SWAT model in upper reaches of the Heihe river basin. Hydrol Process 23(19):2744–2753CrossRefGoogle Scholar
  22. Ling F, Wu Q, Zhang T, Niu F (2012) Modelling open-talik formation and permafrost lateral thaw under a Thermokarst Lake, Beiluhe Basin, Qinghai-Tibet Plateau. Permafr Periglac Proc 23(4):312–321CrossRefGoogle Scholar
  23. Mackay J (1995) Active layer changes (1968 to 1993) following the forest-tundra fire near Inuvik, NWT, Canada. Arct Alp Res 27(4):323–336CrossRefGoogle Scholar
  24. Minke M, Donner N, Karpov N, de Klerk P, Joosten H (2009) Patterns in vegetation composition, surface height and thaw depth in polygon mires in the Yakutian Arctic (NE Siberia): a microtopographical characterisation of the active layer. Permafr Periglac Proc 20(4):357–368CrossRefGoogle Scholar
  25. Mu C, Zhang T, Wu Q, Zhang X, Cao B, Wang Q, Peng X, Cheng G (2014) Stable carbon isotopes as indicators for permafrost carbon vulnerability in upper reach of Heihe River basin, northwestern China. Quat Int 321:71–77CrossRefGoogle Scholar
  26. Mu C, Zhang T, Wu Q, Peng X, Cao B, Zhang X, Cao B, Cheng G (2015) Editorial: organic carbon pools in permafrost regions on the Qinghai-Xizang (Tibetan) Plateau. Cryosphere 9(2):479–486CrossRefGoogle Scholar
  27. Nelson TA, Boots B (2008) Detecting spatial hot spots in landscape ecology. Ecography 31(5):556–566CrossRefGoogle Scholar
  28. Nelson FE, Shiklomanov NI, Mueller GR, Hinkel KM, Walker DA, Bockheim JG (1997) Estimating active-layer thickness over a large region: Kuparuk River Basin, Alaska, USA. Arct Alp Res 29(4):367–378CrossRefGoogle Scholar
  29. Nelson FE, Hinkel KM, Shiklomanov NI, Mueller GR, Miller LL, Walker DA (1998) Active-layer thickness in north central Alaska: systematic sampling, scale, and spatial autocorrelation. J Geophys Res Atmos 103(22):28963–28973. doi: 10.1029/98jd00534 CrossRefGoogle Scholar
  30. Nelson FE, Shiklomanov NI, Christiansen HH, Hinkel KM (2004) The circumpolar-active-layer-monitoring (CALM) Workshop: Introduction. Permafr Periglac Proc 15(2):99–101CrossRefGoogle Scholar
  31. Pizano C, Barón A, Schuur EAG, Crummer KG, Mack MC (2014) Effects of thermo-erosional disturbance on surface soil carbon and nitrogen dynamics in upland arctic tundra. Eviron Res Lett. doi: 10.1088/1748-9326/9/7/075006 Google Scholar
  32. Pries CEH, van Logtestjin RSP, Schuur EAG, Natali SM, Cornelissen JHC, Aerts R, Dorrepaal E (2015) Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystem. Global Change Biol. doi: 10.1111/gcb.13032 Google Scholar
  33. Shen H, Tang Y, Washitani I (2006) Morphological plasticity of Primula nutans to hummock-and-hollow microsites in an alpine wetland. J Plant Res 119(3):257–264CrossRefGoogle Scholar
  34. Shiklomanov NI, Nelson FE (1999) Analytic representation of the active layer thickness field, Kuparuk River Basin, Alaska. Ecol Model 123(2–3):105–125CrossRefGoogle Scholar
  35. Shiklomanov NI, Streletskiy DA, Nelson FE (2012) Northern hemisphere component of the global Circumpolar Active Layer Monitoring (CALM) Program. In: Hinkel KM (eds) Proceedings of the tenth international conference on permafrost, pp 25–29Google Scholar
  36. Smith SL, Wolfe SA, Riseborough DW, Nixon FM (2009) Active-layer characteristics and summer climatic indices, Mackenzie Valley, Northwest Territories, Canada. Permafr Periglac Proc 20(2):201–220CrossRefGoogle Scholar
  37. Vasiliev A, Leibman M, Moskalenko N, Kane D, Hinkel K (2008) Active layer monitoring in West Siberia under the CALM II Program. In: Kane DL, Hinkel KM (eds) Proceedings ninth international conference on permafrost, pp 1815–1821Google Scholar
  38. Vonk JE, Gustafsson Ö (2013) Permafrost-carbon complexities. Nat Geosci 6:675–676CrossRefGoogle Scholar
  39. Vonk JE, Tank SE, Bowden WB, Laurion I (2015) Reviews and synthesis: effects of permafrost than on arctic aquatic ecosystem. Biogeosci Discuss 12:1–97. doi: 10.5194/bgd-12-1-2015 Google Scholar
  40. Walker IJ, Eamer JB, Darke IB (2013) Assessing significant geomorphic changes and effectiveness of dynamic restoration in a coastal dune ecosystem. Geomorphology 199(2013):192–204CrossRefGoogle Scholar
  41. Wang Q, Zhang T, Wu J, Peng X, Zhong X, Mu C, Wang K, Wu Q, Cheng G (2013) Investigation on permafrost distribution over the upper reaches of the Heihe River in the Qilian Mountains. J Glaciol Geocryol 1:004 (in Chinese) Google Scholar
  42. Woo MK, Kane DL, Carey SK, Yang D (2008) Progress in permafrost hydrology in the new millennium. Permafr Periglac Proc 19(2):237–254CrossRefGoogle Scholar
  43. Wright N, Hayashi M, Quinton WL (2009) Spatial and temporal variations in active layer thawing and their implication on runoff generation in peat-covered permafrost terrain. Water Resour Res 45:13. doi: 10.1029/2008wr006880 Google Scholar
  44. Wu QB, Niu FJ (2013) Permafrost changes and engineering stability in Qinghai-Xizang Plateau. Chin Sci Bull 58(10):1079–1094CrossRefGoogle Scholar
  45. Wu QB, Zhang TJ (2010) Changes in active layer thickness over the Qinghai-Tibetan Plateau from 1995 to 2007. J Geophys Res. doi: 10.1029/2009jd012974 Google Scholar
  46. Wu JC, Sheng Y, Li J, Wang J (2009) Permafrost in source areas of Shule River in Qilian Mountains. Acta Geographica Sinica 64(5):571–580 (in Chinese) Google Scholar
  47. Zamolodchikov D, Kotov A, Karelin D, Razzhivin V (2008) Recent climate and active layer changes in northeast Russia: regional output of Circumpolar Active Layer Monitoring (CALM). In: Kane DL, Hinkel KM (eds) 9th international conference on permafrost, pp 2021–2027Google Scholar
  48. Zhang TJ (2005) Historical overview of permafrost studies in China. Phys Geogr 26(4):279–298CrossRefGoogle Scholar
  49. Zhang T, Stamnes K (1998) Impact of climatic factors on the active layer and permafrost at Barrow, Alaska. Permafr Periglac Proc 9(3):229–246CrossRefGoogle Scholar
  50. Zhang TJ, Frauenfeld OW, Serreze MC, Etringer A, Oelke C, McCreight J, Barry RG, Gilichinsky D, Yang DQ, Ye HC, Ling F, Chudinova S (2005) Spatial and temporal variability in active layer thickness over the Russian Arctic drainage basin. J Geophys Res 110(D16):D16101. doi: 10.1029/2004JD005642 CrossRefGoogle Scholar
  51. Zhou YW, Guo DX, Qiu GQ, Cheng GD, Li SD (2000) Permafrost in China. Science Press, Beijing, pp 367–376Google Scholar
  52. Zhou YC, Fan JW, Zhong HP, Zhang WY (2013) Relationships between altitudinal gradient and plant carbon isotope composition of grassland communities on the Qinghai-Tibet Plateau, China. Sci China-Earth Sci 56(2):311–320CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Tanguang Gao
    • 1
    • 2
    Email author
  • Tingjun Zhang
    • 2
  • Xudong Wan
    • 2
  • Shichang Kang
    • 1
    • 3
  • Mika Sillanpää
    • 4
  • Yanmei Zheng
    • 5
  • Lin Cao
    • 2
  1. 1.Cold and Arid Regions Environmental and Engineering Research InstituteChinese Academy of SciencesLanzhouChina
  2. 2.College of Earth Environmental SciencesLanzhou UniversityLanzhouChina
  3. 3.CAS Center for Excellence in Tibetan Plateau Earth SciencesChinese Academy of SciencesBeijingChina
  4. 4.Laboratory of Green ChemistryLappeenranta University of TechnologyMikkeliFinland
  5. 5.College of Computer Science and TechnologyHenan Polytechnic UniversityJiaozuoChina

Personalised recommendations