Mapping groundwater potential field using catastrophe fuzzy membership functions and Jenks optimization method: a case study of Maragheh-Bonab plain, Iran

  • Sina SadeghfamEmail author
  • Yousef Hassanzadeh
  • Ata Allah Nadiri
  • Rahman Khatibi
Original Article


Groundwater potential fields may be modeled by appropriate hydraulic equations governing aquifers, but these require a large amount of data not often available and subject to uncertainty. This paper approaches relative groundwater potential fields by integrating information derived from 11 data layers representing different distributed properties, but the emerging relativistic capability on deriving potential fields is not identical to hydraulics based one. Each of data layers has partial information and compared with one another, the layers are not homogeneous and not directly amenable to integration. One framework in the state-of-the-art of such problems is to use a catastrophe fuzzy membership function to capture and integrate the inherent information, but the decisions on the type of catastrophe function and the fuzzy-like membership intervals employ expert judgment. The paper builds on existing methodology to overcome this shortfall by the iterative identification of the type of catastrophe and using the Jenks optimization method to identify the break points in the data. The results project a new capability, according to which non-dimensional groundwater potential fields are an outcome of different catastrophes. For instance, in the study of non-dimensional groundwater potential fields of the aquifer along Sufichay (the River Sufi), the potential field combines contributions from two cusp catastrophes, one swallowtail catastrophe, two butterfly catastrophes and six wigwam catastrophes. The results provide anecdotal, but significant, evidence that the estimated potential field is fit for purpose.


Groundwater potential Catastrophe theory Decision-making Subjectivity  Objectivity  



The authors would like to thank Water and Wastewater Company of the Maragheh city for the financial support to the project, as well as East Azerbaijan Regional Water Authority and Mr. Sohrab Roshanaie for their cooperation in data preparation. In particular, Dr. Mansour Kheyrizadeh provided specialist advice on remote sensing, for whom we are grateful.


  1. Ahmed K, Shahid S, Bin Harun S, Ismail T, Nawaz N, Shamsudin S (2014) Assessment of groundwater potential zones in an arid region based on catastrophe theory. Earth Sci Inform 8:539–549. doi: 10.1007/s12145-014-0173-3 CrossRefGoogle Scholar
  2. Chen Y, Song G, Yang F, Zhang S, Zhang Y, Liu Z (2012) Risk assessment and hierarchical risk management of enterprises in chemical industrial parks based on catastrophe theory. Int J Environ Res Public Health 9:4386–4402. doi: 10.3390/ijerph9124386 CrossRefGoogle Scholar
  3. Cheng CH, Liu YH, Lin Y (1996) Evaluating a weapon system using catastrophe series based on fuzzy scales. In: Proceedings of soft computing in intelligent systems and information. IEEE, pp 212-217. doi: 10.1109/AFSS.1996.583593
  4. Chowdhury A, Jha MK, Chowdhary VM, Mal BC (2009) Integrated remote sensing and GIS-based approach for accessing groundwater potential in west Medinipur district, West Bengal, India. Int J Remote Sens 30:231–250. doi: 10.1080/01431160802270131 CrossRefGoogle Scholar
  5. Crippen RE (1990) Calculating the vegetation index faster. Remote Sens Environ 34:71–73. doi: 10.1016/0034-4257(90)90085-Z CrossRefGoogle Scholar
  6. Dhar A, Sahoo S, Sahoo M (2015) Identification of groundwater potential zones considering water quality aspect. Environ Earth Sci 74:5663–5675. doi: 10.1007/s12665-015-4580-7 CrossRefGoogle Scholar
  7. Edet AE, Okereke CS, Teme SC, Esu EO (1998) Application of remote sensing data to groundwater exploration: a case study of the cross river state, southeastern Nigeria. Hydogeol J 6:394–404. doi: 10.1007/s100400050162 CrossRefGoogle Scholar
  8. Emberger L (1930) La végétation de la région méditérranéenne. Essai d’une classification des groupements végétaux. Revue de Botanique n 503:642–662Google Scholar
  9. Jaiswal RK, Mukherjee S, Krishnamurthy J, Saxena R (2003) Role of remote sensing and GIS techniques for generation of groundwater prospect zones towards rural development–an approach. Int J Remote Sens 24:993–1008. doi: 10.1080/01431160210144543 CrossRefGoogle Scholar
  10. Jasmin I, Mallikarjuna P (2014) Delineation of groundwater potential zones in Araniar River basin, Tamil Nadu, India: an integrated remote sensing and geographical information system approach. Environ Earth Sci 73:3833–3847. doi: 10.1007/s12665-014-3666-y CrossRefGoogle Scholar
  11. Jenks GF (1967) The data model concept in statistical mapping. Int Yearb Cartogr 7:186–190Google Scholar
  12. Jha M, Chowdhury A, Chowdary VM, Peiffer S (2007) Groundwater management and development by integrated remote sensing and geographic information systems: prospects and constraints. Water Resour Manag 21:427–467. doi: 10.1007/s11269-006-9024-4 CrossRefGoogle Scholar
  13. Karanth KR, Seshu Babu K (1978) Identification of major lineaments on satellite imagery and on aerial photographs for delineation for possible potential groundwater zones in Penukonda and Dharmavaram taluks of Anantapur district. In: Proceedings of joint Indo US workshop on remote sensing of water resources. NRSA, Hyderabad, pp 188–197Google Scholar
  14. Khatibi R (2014) Introducing “arithmetic calculus” with some applications: new terms, definitions, notations and operators. J Appl Math 5:2909–2934. doi: 10.4236/am.2014.519277 CrossRefGoogle Scholar
  15. Machiwal D, Rangi N, Sharma A (2014) Integrated knowledge-and data-driven approaches for groundwater potential zoning using GIS and multi-criteria decision making techniques on hard-rock terrain of Ahar catchment, Rajasthan, India. Environ Earth Sci 73:1871–1892. doi: 10.1007/s12665-014-3544-7 CrossRefGoogle Scholar
  16. Madani A, Niyazi B (2015) Groundwater potential mapping using remote sensing techniques and weights of evidence GIS model: a case study from Wadi Yalamlam basin, Makkah Province, Western Saudi Arabia. Environ Earth Sci 74:5129–5142. doi: 10.1007/s12665-015-4524-2 CrossRefGoogle Scholar
  17. Nag SK, Ghosh P (2012) Delineation of groundwater potential zone in Chhatna Block, Bankura District, West Bengal, India using remote sensing and GIS techniques. Environ Earth Sci 70:2115–2127. doi: 10.1007/s12665-012-1713-0 CrossRefGoogle Scholar
  18. Nampak H, Pradhan B, Manap MA (2014) Application of GIS based data driven evidential belief function model to predict groundwater potential zonation. J Hydrol 513:283–300. doi: 10.1016/j.jhydrol.2014.02.053 CrossRefGoogle Scholar
  19. Ni J, Ding F, Yu H (2015) Catastrophe theory-based water quality evaluation model under uncertain environment, case in Chaohu Lake. In: Proceedings of the ninth international conference on management science and engineering management. Springer, Berlin, Heidelberg, pp 903–916. doi: 10.1007/978-3-662-47241-5_76
  20. Ozdemir A (2011) GIS-based groundwater spring potential mapping in the Sultan Mountains (Konya, Turkey) using frequency ratio, weights of evidence and logistic regression methods and their comparison. J Hydrol 411:290–308. doi: 10.1016/j.jhydrol.2011.10.010 CrossRefGoogle Scholar
  21. Pinto D, Shrestha S, Babel MS, Ninsawat S (2015) Delineation of groundwater potential zones in the Comoro watershed, Timor Leste using GIS, remote sensing and analytic hierarchy process (AHP) technique. Appl water Sci 1–17. doi: 10.1007/s13201-015-0270-6
  22. Prasad RK, Mondal NC, Banerjee P, Nandakumar MV, Singh VS (2008) Deciphering potential groundwater zone in hard rock through the application of GIS. Environ Geol 55:467–475. doi: 10.1007/s00254-007-0992-3 CrossRefGoogle Scholar
  23. Preeja KR, Joseph S, Thomas J, Vijith H (2011) Identification of groundwater potential zones of a tropical river basin (Kerala, India) using remote sensing and GIS techniques. J Indian Soc Remote Sens 39:83–94. doi: 10.1007/s12524-011-0075-5 CrossRefGoogle Scholar
  24. Sankar K (2002) Evaluation of groundwater potential zones using remote sensing data in upper Vaigai river basin, Tamilnadu, India. J Indian Soc Remote Sens 30:119–129. doi: 10.1007/BF02990644 CrossRefGoogle Scholar
  25. Shankar MNR, Mohan G (2006) Assessment of the groundwater potential and quality in Bhatsa and Kalu river basins of Thane district, western Deccan Volcanic Province of India. Environ Geol 49:990–998. doi: 10.1007/s00254-005-0137-5 CrossRefGoogle Scholar
  26. Sree Devi PD, Srinivasulu S, Raju KK (2001) Hydrogeomorphological and groundwater prospects of the Pageru river basin by using remote sensing data. Environ Geol 40:1088–1094. doi: 10.1007/s002540100295 CrossRefGoogle Scholar
  27. Thilagavathi N, Subramani T, Suresh M, Karunanidhi D (2015) Mapping of groundwater potential zones in Salem Chalk Hills, Tamil Nadu, India, using remote sensing and GIS techniques. Environ Monit Assess 187:1–17. doi: 10.1007/s10661-015-4376-y CrossRefGoogle Scholar
  28. Todd DK, Mays LW (2005) Groundwater hydrology. Wiley, New JerseyGoogle Scholar
  29. Wang W, Liu S, Zhang S, Chen J (2011) Assessment of a model of pollution disaster in near-shore coastal waters based on catastrophe theory. Ecol Model 222:307–312. doi: 10.1016/j.ecolmodel.2010.09.007 CrossRefGoogle Scholar
  30. Xiao-jun W, Jian-yun Z, Shahid S, Xing-hui X, Rui-min H, Man-ting S (2014) Catastrophe theory to assess water security and adaptation strategy in the context of environmental change. Mitig Adapt Strategies Glob Chang 19:463–477. doi: 10.1007/s11027-012-9443-x CrossRefGoogle Scholar
  31. Zhang TJ, Ren SX, Li SG, Zhang TC, Xu HJ (2009) Application of the catastrophe progression method in predicting coal and gas outburst. Int J Min Sci Technol 19:430–434. doi: 10.1016/S1674-5264(09)60080-6 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Sina Sadeghfam
    • 1
    Email author
  • Yousef Hassanzadeh
    • 1
  • Ata Allah Nadiri
    • 2
  • Rahman Khatibi
    • 3
  1. 1.Department of Water Resources Engineering, Faculty of Civil EngineeringUniversity of TabrizTabrizIran
  2. 2.Department of Geology, Faculty of ScienceUniversity of TabrizTabrizIran
  3. 3.Rahman Khatibi, GTEV-ReX LimitedSwindonUK

Personalised recommendations