Environmental Earth Sciences

, 75:316 | Cite as

Effects of root water uptake formulation on simulated water and energy budgets at local and basin scales

  • Ian M. Ferguson
  • Jennifer L. Jefferson
  • Reed M. Maxwell
  • Stefan J. Kollet
Original Article


Roots connect water stored beneath the Earth’s surface to water in the atmosphere. The fully integrated hydrologic model ParFlow coupled to the Common Land Model is used to investigate the influence of the root uptake formulation on simulated water and energy fluxes and budgets at local and watershed scales. The effects of four functional representations of vegetation water stress and plant wilting behavior are evaluated in the semi-arid Little Washita watershed of the Southern Great Plains, USA. Monthly mean latent and sensible heat fluxes differ by more than 25 W m−2 over much of the study area during hot, dry summer conditions. This difference indicates that the root uptake formulation has a substantial impact on simulated land energy fluxes and land–atmosphere interactions. Differences in annual evapotranspiration and stream discharge over the watershed exceed 14.5 and 55.5 % between simulations, respectively, demonstrating significant impacts on simulated water budgets. Notably, the analysis reveals that spatial variability in the sensitivity of local-scale water and energy fluxes to root uptake formulation is primarily driven by feedbacks between water table dynamics, soil moisture, and land energy fluxes. These results have important implications for model development, calibration, and validation.


Integrated model Root uptake Vegetation water stress Wilting behavior Energy flux 



This research was supported in part by the Golden Energy Computing Organization at the Colorado School of Mines using resources acquired with financial assistance from the National Science Foundation and the National Renewable Energy Laboratory. This work was also supported in part by the National Science Foundation Water, Sustainability and Climate grant (WSC-1204787).


  1. Amenu GG, Kumar P (2008) A model for hydraulic redistribution incorporating coupled soil-root moisture transport. Hydrol Earth Syst Sci 12:55–74CrossRefGoogle Scholar
  2. Ashby SF, Falgout RD (1996) A parallel multigrid preconditioned conjugate gradient algorithm for groundwater flow simulations. Nucl Sci Eng 124:145–159Google Scholar
  3. Braud I, Varado N, Olioso A (2005) Comparison of root water uptake modules using either the surface energy balance or potential transpiration. J Hydrol 301:267–286. doi: 10.1016/j.jhydrol.2004.06.033 CrossRefGoogle Scholar
  4. Caldwell MM, Dawson TE, Richards JH (1998) Hydraulic lift: consequences of water efflux from the roots of plants. Oecologia 113:151–161CrossRefGoogle Scholar
  5. Chen F, Dudhia J (2001) Coupling an advanced land surface-hydrology model with the penn state–NCAR MM5 modeling system. part i: model implementation and sensitivity. Mon Weather Rev 129:569–585. doi: 10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2 CrossRefGoogle Scholar
  6. Chen F, Mitchell K, Schaake J et al (1996) Modeling of land surface evaporation by four schemes and comparison with FIFE observations. J Geophys Res 101:7251–7268CrossRefGoogle Scholar
  7. Christensen NS, Wood AW, Voisin N et al (2004) The effects of climate change on the hydrology and water resources of the Colorado River basin. Clim Chang 62:337–363CrossRefGoogle Scholar
  8. Collatz GJ, Ball JT, Grivet C, Berry JA (1991) Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration : a model that includes a laminar boundary layer. Agric For Meteorol 54:107–136CrossRefGoogle Scholar
  9. Dai Y, Zeng X, Dickinson RE (2001) Common land model (CLM) technical documentation and user’s guideGoogle Scholar
  10. Dai Y, Zeng X, Dickinson RE et al (2003) The common land model. Bull Am Meteorol Soc 84:1013–1023. doi: 10.1175/BAMS-84-8-1013 CrossRefGoogle Scholar
  11. Dawson TE (1993) Hydraulic lift and water use by plants: implications for water balance, performance and plant-plant interactions. Oecologia 95:565–574CrossRefGoogle Scholar
  12. De Rosnay P, Polcher J (1998) Modelling root water uptake in a complex land surface scheme couple to a GCM. Hydrol Earth Syst Sci 2:239–255CrossRefGoogle Scholar
  13. El Maayar M, Price DT, Chen JM (2009) Simulating daily, monthly and annual water balances in a land surface model using alternative root water uptake schemes. Adv Water Resour 32:1444–1459. doi: 10.1016/j.advwatres.2009.07.002 CrossRefGoogle Scholar
  14. Feddes RA, Hoff H, Bruen M et al (2001) Modeling root water uptake in hydrological and climate models. Bull Am Meteorol Soc 82:2797–2809. doi: 10.1175/1520-0477(2001)082<2797:MRWUIH>2.3.CO;2 CrossRefGoogle Scholar
  15. Ferguson IM, Maxwell RM (2010) Role of groundwater in watershed response and land surface feedbacks under climate change. Water Resour Res 46:15. doi: 10.1029/2009WR008616 CrossRefGoogle Scholar
  16. Ferguson IM, Maxwell RM (2011) Hydrologic and land–energy feedbacks of agricultural water management practices. Environ Res Lett 6:7. doi: 10.1088/1748-9326/6/1/014006 CrossRefGoogle Scholar
  17. Ferretti DF, Pendall E, Morgan JA et al (2003) Partitioning evapotranspiration fluxes from a Colorado grassland using stable isotopes: seasonal variations and ecosystem implications of elevated atmospheric CO2. Plant Soil 254:291–303CrossRefGoogle Scholar
  18. Guo Z, Dirmeyer PA (2006) Evaluation of the Second Global Soil Wetness Project soil moisture simulations: 1. Intermodel comparison. J Geophys Res 111:14. doi: 10.1029/2006JD007233 Google Scholar
  19. Guswa AJ (2005) Soil-moisture limits on plant uptake: an upscaled relationship for water-limited ecosystems. Adv Water Resour 28:543–552. doi: 10.1016/j.advwatres.2004.08.016 CrossRefGoogle Scholar
  20. Healy RW, Winter TC, LaBaugh JW, Franke OL (2007) Water budgets: foundations for effective water-resources and environmental management. US Geological Survey, RestonGoogle Scholar
  21. Herweijer C, Seager R, Cook ER, Emile-Geay J (2007) North American droughts of the last millennium from a gridded network of tree-ring data. J Clim 20:1353–1376. doi: 10.1175/JCLI4042.1 CrossRefGoogle Scholar
  22. Homaee M, Feddes RA, Dirksen C (2002) Simulation of root water uptake II. Non-uniform transient water stress using different reduction functions. Agric Water Manag 57:111–126CrossRefGoogle Scholar
  23. Jackson TJ, Le Vine DM, Hsu AY et al (1999) Soil moisture mapping at regional scales using microwave radiometry: the southern great plains hydrology experiment. IEEE Trans Geosci Remote Sens 37:2136–2151CrossRefGoogle Scholar
  24. Jarvis NJ (2011) Simple physics-based models of compensatory plant water uptake: concepts and eco-hydrological consequences. Hydrol Earth Syst Sci Discuss 8:6789–6831. doi: 10.5194/hessd-8-6789-2011 CrossRefGoogle Scholar
  25. Javaux M, Schröder T, Vanderborght J, Vereecken H (2008) Use of a three-dimensional detailed modeling approach for predicting root water uptake. Vadose Zo J 7:1079–1088. doi: 10.2136/vzj2007.0115 CrossRefGoogle Scholar
  26. Jones JE, Woodward CS (2001) Newton-Krylov-multigrid solvers for large-scale, highly heterogeneous, variably saturated flow problems. Adv Water Resour 24:763–774CrossRefGoogle Scholar
  27. Katul G, Todd P, Pataki D et al (1997) Soil water depletion by oak trees and the influence of root water uptake on the moisture content spatial statistics. Water Resour Res 33:611–623CrossRefGoogle Scholar
  28. Kollet SJ, Maxwell RM (2006) Integrated surface–groundwater flow modeling: a free-surface overland flow boundary condition in a parallel groundwater flow model. Adv Water Resour 29:945–958. doi: 10.1016/j.advwatres.2005.08.006 CrossRefGoogle Scholar
  29. Kollet SJ, Maxwell RM (2008) Capturing the influence of groundwater dynamics on land surface processes using an integrated, distributed watershed model. Water Resour Res 44:18. doi: 10.1029/2007WR006004 CrossRefGoogle Scholar
  30. Kollet SJ, Maxwell RM, Woodward CS et al (2010) Proof of concept of regional scale hydrologic simulations at hydrologic resolution utilizing massively parallel computer resources. Water Resour Res 46:7. doi: 10.1029/2009WR008730 CrossRefGoogle Scholar
  31. Kucharik CJ, Foley JA, Delire C et al (2000) Testing the performance of a dynamic global ecosystem model: water balance, carbon balance, and vegetation structure. Glob Biogeochem Cycles 14:795–825CrossRefGoogle Scholar
  32. Lai C-T, Katul G (2000) The dynamic role of root-water uptake in coupling potential to actual transpiration. Adv Water Resour 23:427–439CrossRefGoogle Scholar
  33. Lawrence DM, Thornton PE, Oleson KW, Bonan GB (2007) The partitioning of evapotranspiration into transpiration, soil evaporation, and canopy evaporation in a GCM: impacts on land-atmosphere interaction. J Hydrometeorol 8:862–880. doi: 10.1175/JHM596.1 CrossRefGoogle Scholar
  34. Li KY, De Jong R, Coe MT, Ramankutty N (2006) Root-water-uptake based upon a new water stress reduction and an asymptotic root distribution function. Earth Interact 10:22. doi: 10.1175/EI177.1 CrossRefGoogle Scholar
  35. Li L, van der Tol C, Chen X et al (2013) Representing the root water uptake process in the common land model for better simulating the energy and water vapour fluxes in a Central Asian desert ecosystem. J Hydrol 502:145–155. doi: 10.1016/j.jhydrol.2013.08.026 CrossRefGoogle Scholar
  36. Liang X, Lettenmaier DP, Wood EF, Burges SJ (1994) A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J Geophys Res 99:14415–14428CrossRefGoogle Scholar
  37. Maxwell RM, Kollet SJ (2008a) Quantifying the effects of three-dimensional subsurface heterogeneity on Hortonian runoff processes using a coupled numerical, stochastic approach. Adv Water Resour 31:807–817. doi: 10.1016/j.advwatres.2008.01.020 CrossRefGoogle Scholar
  38. Maxwell RM, Kollet SJ (2008b) Interdependence of groundwater dynamics and land-energy feedbacks under climate change. Nat Geosci 1:665–669. doi: 10.1038/ngeo315 CrossRefGoogle Scholar
  39. Mendel M, Hergarten S, Neugebauer HJ (2002) On a better understanding of hydraulic lift: a numerical study. Water Resour Res. doi: 10.1029/2001WR000911 Google Scholar
  40. Mesinger F, DiMego G, Kalnay E et al (2006) North American regional reanalysis. Bull Am Meteorol Soc 87:343–360. doi: 10.1175/BAMS-87-3-343 CrossRefGoogle Scholar
  41. Miller GR, Chen X, Rubin Y et al (2010) Groundwater uptake by woody vegetation in a semiarid oak savanna. Water Resour Res 46:14. doi: 10.1029/2009WR008902 CrossRefGoogle Scholar
  42. Namias J (1982) Anatomy of great plains protracted heat waves (especially the 1980 U.S. summer drought). Mon Weather Rev 110:824–838CrossRefGoogle Scholar
  43. Niu G-Y, Yang Z-L, Mitchell KE et al (2011) The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J Geophys Res 116:19. doi: 10.1029/2010JD015139 Google Scholar
  44. Noilhan J, Planton S (1989) A simple parameterization of land surface processes for meteorological models. Mon Weather Rev 117:536–549CrossRefGoogle Scholar
  45. Pitman AJ, Henderson-Sellers A, Desborough CE et al (1999) Key results and implications from phase 1(c) of the project for intercomparison of land-surface parametrization schemes. Clim Dyn 15:673–684. doi: 10.1007/s003820050309 CrossRefGoogle Scholar
  46. Rihani JF, Maxwell RM, Chow FK (2010) Coupling groundwater and land surface processes: idealized simulations to identify effects of terrain and subsurface heterogeneity on land surface energy fluxes. Water Resour Res 46:14. doi: 10.1029/2010WR009111 CrossRefGoogle Scholar
  47. Schaap MG, Leij FJ (1998) Database-related accuracy and uncertainty of pedotransfer functions. Soil Sci 163:765–779CrossRefGoogle Scholar
  48. Schneider JM, Fisher DK, Elliot RL et al (2003) Spatiotemporal variations in soil water: first results from the ARM SGP CART network. J Hydrometeorol 4:106–120CrossRefGoogle Scholar
  49. Schubert SD, Suarez MJ, Pegion PJ et al (2004) On the cause of the 1930s dust bowl. Science 303:1855–1859CrossRefGoogle Scholar
  50. Scibek J, Allen DM (2006) Modeled impacts of predicted climate change on recharge and groundwater levels. Water Resour Res 42:18. doi: 10.1029/2005WR004742 CrossRefGoogle Scholar
  51. Sellers PJ, Berry JA, Collatz GJ et al (1992) Canopy reflectance, photosynthesis, and transpiration. III. A reanalysis using improved leaf models and a new canopy integration scheme. Remote Sens Environ 42:187–216. doi: 10.1016/0034-4257(92)90102-P CrossRefGoogle Scholar
  52. Siqueira M, Katul G, Porporato A (2008) Onset of water stress, hysteresis in plant conductance, and hydraulic lift: scaling soil water dynamics from millimeters to meters. Water Resour Res 44:14. doi: 10.1029/2007WR006094 CrossRefGoogle Scholar
  53. Sivandran G, Bras RL (2012) Identifying the optimal spatially and temporally invariant root distribution for a semiarid environment. Water Resour Res 48:13. doi: 10.1029/2012WR012055 CrossRefGoogle Scholar
  54. Sridhar V, Elliot RL, Chen F, Brotzge JA (2002) Validation of the NOAH-OSU land surface model using surface flux measurements in Oklahoma. J Geophys Res 107:4418. doi: 10.1029/2001JD001306 CrossRefGoogle Scholar
  55. Syed TH, Famiglietti JS, Rodell M et al (2008) Analysis of terrestrial water storage changes from GRACE and GLDAS. Water Resour Res 44:15. doi: 10.1029/2006WR005779 CrossRefGoogle Scholar
  56. Trenberth KE, Smith L, Qian T et al (2007) Estimates of the global water budget and its annual cycle using observational and model data. J Hydrometeorol 8:758–769. doi: 10.1175/JHM600.1 CrossRefGoogle Scholar
  57. Trenberth KE, Fasullo JT, Kiehl J (2009) Earth’s global energy budget. Bull Am Meteorol Soc 90:311–323. doi: 10.1175/2008BAMS2634.1 CrossRefGoogle Scholar
  58. Van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am 44:892–898CrossRefGoogle Scholar
  59. Verhoef A, Egea G (2014) Modeling plant transpiration under limited soil water: comparison of different plant and soil hydraulic parameterizations and preliminary implications for their use in land surface models. Agric For Meteorol 191:22–32. doi: 10.1016/j.agrformet.2014.02.009 CrossRefGoogle Scholar
  60. Williams DG, Cable W, Hultine K et al (2004) Evapotranspiration components determined by stable isotope, sap flow and eddy covariance techniques. Agric For Meteorol 125:241–258. doi: 10.1016/j.agrformet.2004.04.008 CrossRefGoogle Scholar
  61. Wilson KB, Hanson PJ, Mulholland PJ et al (2001) A comparison of methods for determining forest evapotranspiration and its components: sap-flow, soil water budget, eddy covariance and catchment water balance. Agric For Meteorol 106:153–168. doi: 10.1016/S0168-1923(00)00199-4 CrossRefGoogle Scholar
  62. Woodhouse CA, Lukas JJ, Brown PM (2002) Drought in the western great plains, 1845–56: impacts and implications. Bull Am Meteorol Soc 83:1485–1493. doi: 10.1175/BAMS-83-10-1485 CrossRefGoogle Scholar
  63. Xue Y, Sellers PJ, Kinter JL, Shukla J (1991) A simplified biosphere model for global climate studies. J Clim 4:345–364CrossRefGoogle Scholar
  64. Zeng X, Dai Y-J, Dickinson RE, Shaikh M (1998) The role of root distribution for climate simulation over land. Geophys Res Lett 25:4533–4536. doi: 10.1029/1998GL900216 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Ian M. Ferguson
    • 1
  • Jennifer L. Jefferson
    • 2
  • Reed M. Maxwell
    • 2
    • 3
  • Stefan J. Kollet
    • 4
  1. 1.Bureau of ReclamationDenver Federal CenterLakewoodUSA
  2. 2.Hydrologic Science and Engineering ProgramColorado School of MinesGoldenUSA
  3. 3.Department of Geology and Geological EngineeringColorado School of MinesGoldenUSA
  4. 4.Centre for High-Performance Scientific Computing in Terrestrial Systems, Geoverbund ABC/J, Institute for Bio- and Geosciences, Agrosphere (IBG-3), Research Centre JülichJülichGermany

Personalised recommendations