Environmental Earth Sciences

, Volume 74, Issue 10, pp 7239–7253 | Cite as

A comprehensive examination of global atmospheric CO2 teleconnections using wavelet-based multi-resolution analysis

  • Huade GuanEmail author
  • Xinguang He
  • Xinping Zhang
Original Article


Interannual variability of the atmospheric CO2 accumulation is at a similar magnitude of decadal average CO2 accumulation in the atmosphere. Part of observed variability in the atmospheric CO2 can be interpreted by large-scale climate variability. Teleconnection between the atmospheric CO2 anomalous tendency and selected large-scale coupled oceanic and atmospheric oscillations (AO, NAO, PDO, IOD, ENSO and SAM) are examined using wavelet-based multi-resolution analysis. The results indicate that all six oscillation indices appear to be associated with monthly CO2 concentration at most of the 13 examined stations. About 70 % of interannual variability of CO2 anomalous tendency at Mauna Loa and South Pole can be interpreted by the climatic indices. The temperature effects on the CO2 anomalous tendency are overall positive. At the monthly scale, they interpret 14 % variability in CO2 anomalous tendency in 1980–2011. At two high elevation stations (Mauna Loa and South Pole) with large footprints, the teleconnection signal is stronger (interpreting 20 and 25 % variability in monthly CO2 anomalous tendency, respectively). Including global mean monthly air temperature time series, slightly but significantly in the statistical sense, improves the proportion of monthly CO2 anomalous tendency being interpreted at most of the examined stations. The signs (positive vs. negative) in the association between monthly CO2 anomalous tendency and the significant climatic indices appear to reflect physical mechanisms leading to such teleconnections.


CO2 concentration Teleconnection Climatic oscillation Wavelet analysis 



National Oceanic and Atmospheric Administration (NOAA) Global Greenhouse Gas Reference Network, and Scripps Institution of Oceanography, USA, provided monthly CO2 concentration data. Climate data were provided by Climate Prediction Centre of NOAA and National Aeronautics and Space Administration, USA, British Antarctic Survey, Japan Agency from Marine-Earth Science and Technology, and University of Washington. The data used in this manuscript can be downloaded from the official websites of these organisations, or provided upon email contact at This study was funded by the Construct Program of Key Discipline in Hunan Province (NO. 2012001), Hunan Bairen Program, China, and Flinders University.


  1. Bacastow RB (1976) Modulation of atmospheric carbon-dioxide by Southern Oscillation. Nature 261:116–118. doi: 10.1038/261116a0 CrossRefGoogle Scholar
  2. Battle M, Bender ML, Tans PP, White JWC, Ellis JT, Conway T, Francey RJ (2000) Global carbon sinks and their variability inferred from atmospheric O-2 and delta C-13. Science 287:2467–2470. doi: 10.1126/science.287.5462.2467 CrossRefGoogle Scholar
  3. Beer C, Reichstein M, Tomelleri E, Ciais P, Jung M, Carvalhais N, Rodenbeck C, Arain MA, Baldocchi D, Bonan GB, Bondeau A, Cescatti A, Lasslop G, Lindroth A, Lomas M, Luyssaert S, Margolis H, Oleson KW, Roupsard O, Veenendaal E, Viovy N, Williams C, Woodward FI, Papale D (2010) Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329:834–838. doi: 10.1126/science.1184984 CrossRefGoogle Scholar
  4. Bousquet P, Peylin P, Ciais P, Le Quere C, Friedlingstein P, Tans PP (2000) Regional changes in carbon dioxide fluxes of land and oceans since 1980. Science 290:1342–1346. doi: 10.1126/science.290.5495.1342 CrossRefGoogle Scholar
  5. Bretherton CS, Widmann M, Dymnikov VP, Wallace JM, Blade I (1999) The effective number of spatial degrees of freedom of a time-varying field. J Climate 12:1990–2009CrossRefGoogle Scholar
  6. Butler AH, Thompson DWJ, Gurney KR (2007) Observed relationships between the Southern Annular Mode and atmospheric carbon dioxide. Glob Biogeochem Cycle. doi: 10.1029/2006gb002796 Google Scholar
  7. Cai WJ, van Rensch P (2012) The 2011 southeast Queensland extreme summer rainfall: a confirmation of a negative Pacific Decadal Oscillation phase? Geophys Res Lett 39:L08702. doi: 10.1029/2011gl050820 Google Scholar
  8. Canadell JG, Le Quere C, Raupach MR, Field CB, Buitenhuis ET, Ciais P, Conway TJ, Gillett NP, Houghton RA, Marland G (2007) Contributions to accelerating atmospheric CO(2) growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad Sci USA 104:18866–18870. doi: 10.1073/pnas.0702737104 CrossRefGoogle Scholar
  9. Cox PM, Pearson D, Booth BB, Friedlingstein P, Huntingford C, Jones CD, Luke CM (2013) Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 494:341–344. doi: 10.1038/nature11882 CrossRefGoogle Scholar
  10. Daubechies I (1992) Ten lectures on wavelets. Society for Industrial and Applied Mathematics Philadelphia, PACrossRefGoogle Scholar
  11. Dettinger MD, Ghil M (1998) Seasonal and interannual variations of atmospheric CO2 and climate. Tellus Ser B-Chem Phys Meteorol 50:1–24. doi: 10.1034/j.1600-0889.1998.00001.x CrossRefGoogle Scholar
  12. Draper NR, Smith H (1998) Applied regression analysis. Wiley, NYCrossRefGoogle Scholar
  13. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, R. Prinn, Raga G, Schulz M, Dorland RV (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds), Climate change 2007: the physical science basis, contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. The intergovermental panel on climate change, Cambridge, UK and New York, NY, USAGoogle Scholar
  14. Friedlingstein P, Houghton RA, Marland G, Hackler J, Boden TA, Conway TJ, Canadell JG, Raupach MR, Ciais P, Le Quere C (2010) Update on CO2 emissions. Nat Geosci 3:811–812. doi: 10.1038/ngeo1022 CrossRefGoogle Scholar
  15. Fujita D, Ishizawa M, Maksyutov S, Thornton PE, Saeki T, Nakazawa T (2003) Inter-annual variability of the atmospheric carbon dioxide concentrations as simulated with global terrestrial biosphere models and an atmospheric transport model. Tellus Ser B-Chem Phys Meteorol 55:530–546. doi: 10.1034/j.1600-0889.2003.00044.x CrossRefGoogle Scholar
  16. Gershunov A, Barnett TP (1998) Interdecadal modulation of ENSO teleconnections. Bull Amer Meteorol Soc 79:2715–2725CrossRefGoogle Scholar
  17. Guan H, Vivoni ER, Wilson JL (2005) Effects of atmospheric teleconnections on seasonal precipitation in mountainous regions of the southwestern US: a case study in northern New Mexico. Geophys Res Lett 32:1–4 Article Number L23701Google Scholar
  18. Gurney KR, Castillo K, Li B, Zhang X (2012) A positive carbon feedback to ENSO and volcanic aerosols in the tropical terrestrial biosphere. Glob Biogeochem Cycle. doi: 10.1029/2011gb004129 Google Scholar
  19. Hashimoto H, Nemani RR, White MA, Jolly WM, Piper SC, Keeling CD, Myneni RB, Running SW (2004) El Ni(n)over-tildeo-Southern Oscillation-induced variability in terrestrial carbon cycling. J Geophys Res-Atmos. doi: 10.1029/2004jd004959 Google Scholar
  20. Haverd V, Raupach MR, Briggs PR, Canadell JG, Davis SJ, Law RM, Meyer CP, Peters GP, Pickett-Heaps C, Sherman B (2013) The Australian terrestrial carbon budget. Biogeosciences 10:851–869. doi: 10.5194/bg-10-851-2013 CrossRefGoogle Scholar
  21. He XG, Guan HD (2014) Multiresolution analysis of precipitation teleconnections with large-scale climate signals: a case study in South Australia. Water Resour Res 49:6995–7008. doi: 10.1002/wrcr.20560 CrossRefGoogle Scholar
  22. Iguchi T (2011) Correlations between interannual variations of simulated global and regional CO2 fluxes from terrestrial ecosystems and El Nino Southern Oscillation. Tellus Ser B-Chem Phys Meteorol 63:196–204. doi: 10.1111/j.1600-0889.2010.00514.x CrossRefGoogle Scholar
  23. Keeling CD, Bacastow RB, Bainbridge AE, Ekdahl CA, Guenther PR, Waterman LS, Chin JFS (1976) Atmospheric carbon-dioxide variations at Mauna_Loa observatory, Hawaii. Tellus 28:538–551CrossRefGoogle Scholar
  24. Keeling CD, Piper SC, Bacastow RB, Wahlen M, Whorf TP, Heimann M, Meijer HA (2005) Atmospheric CO2 and 13CO2 exchange with the terrestrial biosphere and oceans from 1978 to 2000: observations and carbon cycle implications. In: Ehleringer JR, Cerling TE, Dearing MD (eds) A history of atmospheric CO2 and its effects on plants. Springer, New York, pp 83–113CrossRefGoogle Scholar
  25. Kurtzman D, Scanlon BR (2007) El Nino-Southern Oscillation and Pacific Decadal Oscillation impacts on precipitation in the southern and central United States: evaluation of spatial distribution and predictions. Water Resour Res 43:W10427. doi: 10.1029/2007WR005863 Google Scholar
  26. Le Quere C (2010) Trends in the land and ocean carbon uptake. Curr Opin Environ Sustain 2:219–224. doi: 10.1016/j.cosust.2010.06.003 CrossRefGoogle Scholar
  27. Le Quere C, Aumont O, Bopp L, Bousquet P, Ciais P, Francey R, Heimann M, Keeling CD, Keeling RF, Kheshgi H, Peylin P, Piper SC, Prentice IC, Rayner PJ (2003) Two decades of ocean CO2 sink and variability. Tellus Ser B-Chem Phys Meteorol 55:649–656. doi: 10.1034/j.1600-0889.2003.00043.x CrossRefGoogle Scholar
  28. Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Myneni RB, Running SW (2003) Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300:1560–1563. doi: 10.1126/science.1082750 CrossRefGoogle Scholar
  29. Percival DB, Walden AT (2000) Wavelet methods for time series analysis. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  30. Peylin P, Bousquet P, Le Quere C, Sitch S, Friedlingstein P, McKinley G, Gruber N, Rayner P, Ciais P (2005) Multiple constraints on regional CO2 flux variations over land and oceans. Glob Biogeochem Cycle. doi: 10.1029/2003gb002214 Google Scholar
  31. Poulter B, Frank D, Ciais P, Myneni RB, Andela N, Bi J, Broquet G, Canadell JG, Chevallier F, Liu YY, Running SW, Sitch S, van der Werf GR (2014) Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509:600–603. doi: 10.1038/nature13376 CrossRefGoogle Scholar
  32. Previdi M, Fennel K, Wilkin J, Haidvogel D (2009) Interannual variability in atmospheric CO2 uptake on the northeast US continental shelf. J Geophys Res-Biogeosci. doi: 10.1029/2008jg000881 Google Scholar
  33. Qian H, Joseph R, Zeng N (2008) Response of the terrestrial carbon cycle to the El Nino-Southern Oscillation. Tellus Ser B-Chem Phys Meteorol 60:537–550. doi: 10.1111/j.1600-0889.2008.00360.x CrossRefGoogle Scholar
  34. Russell JL, Wallace JM (2004) Annual carbon dioxide drawdown and the Northern Annular Mode. Glob Biogeochem Cycle. doi: 10.1029/2003gb002044 Google Scholar
  35. Schaefli B, Maraun D, Holschneider M (2007) What drives high flow events in the Swiss Alps? Recent developments in wavelet spectral analysis and their application to hydrology. Adv Water Resour 30:2511–2525. doi: 10.1016/j.advwatres.2007.06.004 CrossRefGoogle Scholar
  36. Schwalm CR, Williams CA, Schaefer K, Baker I, Collatz GJ, Rodenbeck C (2011) Does terrestrial drought explain global CO2 flux anomalies induced by El Nino? Biogeosciences 8:2493–2506. doi: 10.5194/bg-8-2493-2011 CrossRefGoogle Scholar
  37. Vlam M, Baker PJ, Bunyavejchewin S, Zuidema PA (2014) Temperature and rainfall strongly drive temporal growth variation in Asian tropical forest trees. Oecologia 174:1449–1461. doi: 10.1007/s00442-013-2846-x CrossRefGoogle Scholar
  38. Wang XH, Piao SL, Ciais P, Friedlingstein P, Myneni RB, Cox P, Heimann M, Miller J, Peng SS, Wang T, Yang H, Chen AP (2014) A two-fold increase of carbon cycle sensitivity to tropical temperature variations. Nature 506:212–215. doi: 10.1038/nature12915 CrossRefGoogle Scholar
  39. Williams CA, Hanan NP (2011) ENSO and IOD teleconnections for African ecosystems: evidence of destructive interference between climate oscillations. Biogeosciences 8:27–40. doi: 10.5194/bg-8-27-2011 CrossRefGoogle Scholar
  40. Zhao MS, Running SW (2010) Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329:940–943. doi: 10.1126/science.1192666 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.College of Resource and Environmental ScienceHunan Normal UniversityChangshaChina
  2. 2.School of the Environment and National Centre for Groundwater Research and TrainingFlinders UniversityAdelaideAustralia

Personalised recommendations