Skip to main content
Log in

How to determine the appropriate methods to identify the geometry of in situ rock blocks in dimension stones

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The present article reviews various methods for discontinuity and rock block survey. The variety of techniques to determine the shape and size distribution of the rock blocks were divided into index and modeling methods. The index methods calculate the average size of a rock block as a representative of the rock mass. These methods are simple, cheap and fast, but are associated with large errors because of the presence of the rock mass of rock blocks with different geometries. Hence, index methods are not recommended. In modeling techniques, discontinuity surveys try to model the rock mass realistically to determine the geometry of all blocks with different algorithms. These methods also have some defects in modeling the discontinuities and calculating the geometry of blocks. In order to perform an evaluation of all methods, six conditions were identified to determine the method for surveying rock blocks. The conditions include the ability to model random discontinuities and joint sets with specific dimensions, the inability to simulate discontinuities with statistical methods (the ability to study a discontinuity network separately), determining the geometry of all rock blocks, considering the dangling and isolated discontinuities, simplicity, and three-dimensionality. Based on the above requirements, a new approach is proposed to determine suitable methods for use in the evaluation of dimension stones. This new methodology was applied in a limestone quarry in Joshqan, Iran, to verify the applicability of the different methods in dimension stone quarries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aqeel A, Anderson N, Maerz N (2014) Mapping subvertical discontinuities in rock cuts using a 400-MHz ground penetrating radar antenna. Arab J Geosci 7(5):2093–2105

    Article  Google Scholar 

  • Arosio D, Munda S, Zanzi L (2012) Quality control of stone blocks during quarrying activities. In: 2012 14th international conference on ground penetrating radar (GPR). IEEE, p 822–826

  • Attewell PB, Farmer IW (1976) Principles of engineering geology. Chapman and Hall, London

    Book  Google Scholar 

  • Bonnet E, Bour O, Odling NE, Davy P, Main I, Cowie P, Berkowitz B (2001) Scaling of fracture systems in geological media. Rev Geophys 39(3):347–383

    Article  Google Scholar 

  • Dearman W (1991) Engineering geological mapping. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Demarco MM, Oyhantçabal P, Stein K-J, Siegesmund S (2011) Black dimensional stones: geology, technical properties and deposit characterization of the dolerites from Uruguay. Environ Earth Sci 63(7–8):1879–1909

    Article  Google Scholar 

  • Demarco MM, Oyhantçabal P, Stein K-J, Siegesmund S (2013a) Dolomitic slates from Uruguay: petrophysical and petromechanical characterization and deposit evaluation. Environ Earth Sci 69(4):1361–1395

    Article  Google Scholar 

  • Demarco MM, Oyhantçabal P, Stein K-J, Siegesmund S (2013b) Granitic dimensional stones in Uruguay: evaluation and assessment of potential resources. Environ Earth Sci 69(4):1397–1438

    Article  Google Scholar 

  • Dershowitz W, Einstein H (1988) Characterizing rock joint geometry with joint system models. Rock Mech Rock Eng 21(1):21–51

    Article  Google Scholar 

  • Einstein H, Veneziano D, Baecher G, O’reilly K (1983) The effect of discontinuity persistence on rock slope stability. Int J Rock Mech Min Sci Geomech Abstr 20:227–236

    Article  Google Scholar 

  • Elci H, Turk N (2014a) Block volume estimation from the discontinuity spacing measurements of mesozoic limestone quarries, Karaburun Peninsula, Turkey. Sci World J 2014:1–10. doi:10.1155/2014/363572

    Article  Google Scholar 

  • Elci H, Turk N (2014b) Rock mass block quality designation for marble production. Int J Rock Mech Min Sci 69:26–30

    Google Scholar 

  • Elmouttie M, Poropat G (2012) A method to estimate in situ block size distribution. Rock Mech Rock Eng 45(3):401–407

    Article  Google Scholar 

  • Elmouttie M, Poropat G, Krähenbühl G (2010) Polyhedral modelling of rock mass structure. Int J Rock Mech Min Sci 47(4):544–552

    Article  Google Scholar 

  • Elmouttie M, Krähenbühl G, Poropat G (2013) Robust algorithms for polyhedral modelling of fractured rock mass structure. Comput Geotech 53:83–94

    Article  Google Scholar 

  • GNI (2007) Geoscience news and information. Iran Map-Iran Satellite Image. http://www.geology.com/world/iran-satellite-image.shtml. Accessed Jan 2015

  • Goodman RE (1995) Block theory and its application. Geotechnique 45:383–423

    Article  Google Scholar 

  • Goodman RE, Shi G-H (1985) Block theory and its application to rock engineering. Englewood Cliffs, Prentice-Hall, pp 9–98

    Google Scholar 

  • GSI (2015) Geological survey of Iran. Report on exploration of Kashan region (in persian). http://www.gsi.ir. Accessed Jan 2015

  • Hamdi E, du Mouza J (2005) A methodology for rock mass characterisation and classification to improve blast results. Int J Rock Mech Min Sci 42(2):177–194

    Article  Google Scholar 

  • Hamdi E, Romdhane NB, du Mouza J, Le Cleac’h JM (2008) Fragmentation energy in rock blasting. Geotech Geol Eng 26(2):133–146

    Article  Google Scholar 

  • Heliot D (1988) Generating a blocky rock mass. Int J Rock Mech Mining Sci Geomech Abstr 25(3):127–138

    Article  Google Scholar 

  • Hudson J, Priest S (1979) Discontinuities and rock mass geometry. Int J Rock Mech Mining Sci Geomech Abstr 16(6):339–362

    Article  Google Scholar 

  • Jaeger JC, Cook NG, Zimmerman R (2009) Fundamentals of rock mechanics. Wiley, Oxford

    Google Scholar 

  • Jafari A, Khishvand M, Rahami H (2013) Developing an algorithm for reconstruction blocky systems in discontinuous media: three-dimensional analysis. Int J Numer Anal Methods Geomech 37(7):661–684

    Article  Google Scholar 

  • Jing L (2000) Block system construction for three-dimensional discrete element models of fractured rocks. Int J Rock Mech Min Sci 37(4):645–659

    Article  Google Scholar 

  • Jing L, Stephansson O (1994) Topological identification of block assemblages for jointed rock masses. Int J Rock Mech Min Sci Geomech Abstr 31(2):163–172

    Article  Google Scholar 

  • Jing L, Stephansson O (2007) Fundamentals of discrete element methods for rock engineering: theory and applications: theory and applications, vol 85. Elsevier, Amsterdam, pp 199–232

    Book  Google Scholar 

  • Khishvand M, Jafari A, Rahami H (2011) Developing an algorithm for reconstruction of blocky systems in discontinuous media: two-dimensional analysis. Geomech Geoeng 6(3):171–183

    Article  Google Scholar 

  • Latham J-P, Van Meulen J, Dupray S (2006) Prediction of in situ block size distributions with reference to armourstone for breakwaters. Eng Geol 86(1):18–36

    Article  Google Scholar 

  • Lato MJ, Diederichs MS, Hutchinson DJ (2010) Bias correction for view-limited Lidar scanning of rock outcrops for structural characterization. Rock Mech Rock Eng 43(5):615–628

    Article  Google Scholar 

  • Lin D, Fairhurst C, Starfield A (1987) Geometrical identification of three-dimensional rock block systems using topological techniques. Int J Rock Mech Min Sci Geomech Abstr 24(6):331–338

    Article  Google Scholar 

  • Lu J (2002) Systematic identification of polyhedral rock blocks with arbitrary joints and faults. Comput Geotech 29(1):49–72

    Article  Google Scholar 

  • Lu P, Latham J-P (1999) Developments in the assessment of in situ block size distributions of rock masses. Rock Mech Rock Eng 32(1):29–49

    Article  Google Scholar 

  • Maerz N, Germain P (1992) Block size determination around underground openings using simulations based on scanline mapping. Preprints of the international society for rock mechanics conference on fractured and jointed Rock Masses, Lake Tahoe, Nevada Berkeley

  • Maerz NH, Germain P (1996) Block size determination around underground openings using simulations. Proceedings of the FRAGBLAST 5 workshop on measurement of blast fragmentation, Montreal, Quebec, Canada, p 215–223

  • Mah J, Samson C, McKinnon SD (2011) 3D laser imaging for joint orientation analysis. Int J Rock Mech Min Sci 48(6):932–941

    Article  Google Scholar 

  • Mahé S, Gasc-Barbier M, Soliva R (2015) Joint set intensity estimation: comparison between investigation modes. Bull Eng Geol Environ 74(1):171–180. doi:10.1007/s10064-014-0572-1

    Article  Google Scholar 

  • Mosch S, Nikolayew D, Ewiak O, Siegesmund S (2011) Optimized extraction of dimension stone blocks. Environ Earth Sci 63(7–8):1911–1924

    Article  Google Scholar 

  • Mutlutürk M (2007) Determining the amount of marketable blocks of dimensional stone before actual extraction. J Min Sci 43(1):67–72

    Article  Google Scholar 

  • Nikolayev D, Siegesmund S, Mosch S, Hoffmann A (2007) Modell-based prediction of unfractured rock masses [Computergestützte Modellierung zur Erfassung ungestörter Gesteinsbereiche]. Z dtsch Ges Geowiss 158(3):483–490

    Google Scholar 

  • Palmstrom A (2005) Measurements of and correlations between block size and rock quality designation (RQD). Tunn Undergr Space Technol 20(4):362–377

    Article  Google Scholar 

  • Palmström A (1985) Application of the volumetric joint count as a measure of rock mass jointing. Proceedings international symposium on fundamentals of rock joints. Björkliden, p 103–111

  • Palmstrøm A (1996a) Characterizing rock masses by the RMi for use in practical rock engineering, part 2: some practical applications of the rock mass index (RMi). Tunn Undergr Space Technol 11(3):287–303

    Article  Google Scholar 

  • Palmstrøm A (1996b) Characterizing rock masses by the RMi for use in practical rock engineering: Part 1: The development of the Rock Mass index (RMi). Tunn Undergr Space Technol 11(2):175–188

    Article  Google Scholar 

  • Palmström A, Sharma VI, Saxena K (2001) In-situ characterization of rocks. AA Balkema Publishers, Exton

    Google Scholar 

  • Porsani JL, Sauck WA, Júnior AO (2006) GPR for mapping fractures and as a guide for the extraction of ornamental granite from a quarry: a case study from southern Brazil. J Appl Geophys 58(3):177–187

    Article  Google Scholar 

  • Priest S, Hudson J (1976) Discontinuity spacings in rock. Int J Rock Mech Min Sci Geomech Abstr 13(5):135–148

    Article  Google Scholar 

  • Priest S, Hudson J (1981) Estimation of discontinuity spacing and trace length using scanline surveys. Int J Rock Mech Min Sci Geomech Abstr 18(3):183–197

    Article  Google Scholar 

  • Q-c Yu, Ohnishi Y, G-f Xue, Chen D (2009) A generalized procedure to identify three-dimensional rock blocks around complex excavations. Int J Numer Anal Methods Geomech 33(3):355–375

    Article  Google Scholar 

  • Saliu MA, Idowu KA (2014) Investigating the effect of fracture on rock fragmentation efficiency: a case study of Kopec Granite Quarries, South Western, Nigeria. J Earth Sci Geotech Eng 4(4):53–69

    Google Scholar 

  • Saliu MA, Muriana OB, Olayinka HJ (2012) Modified volumetric joint count to check for suitability of granite outcrops for dimension stone production. J Eng Sci Technol 7(5):646–660

    Google Scholar 

  • Seren A, Acikgoz AD (2012) Imaging fractures in a massive limestone with ground penetrating radar, Haymana, Turkey. Sci Res Essays 7(40):3368–3381

    Google Scholar 

  • Shi G-H (1992) Discontinuous deformation analysis: a new numerical model for the statics and dynamics of deformable block structures. Eng Comput 9(2):157–168

    Article  Google Scholar 

  • Siegesmund S, Nikolayev D, Hoffmann A, Mosch S (2007) 3D-block-expert. Naturstein 5(2007):102–107

    Google Scholar 

  • Smith J (2004) Determining the size and shape of blocks from linear sampling for geotechnical rock mass classification and assessment. J Struct Geol 26(6):1317–1339

    Article  Google Scholar 

  • Sousa LM (2007) Granite fracture index to check suitability of granite outcrops for quarrying. Eng Geol 92(3):146–159

    Article  Google Scholar 

  • Sousa L (2010) Evaluation of joints in granitic outcrops for dimension stone exploitation. Q J Eng Geol Hydrogeol 43(1):85–94

    Article  Google Scholar 

  • Starzec P, Tsang C-F (2002) Use of fracture-intersection density for predicting the volume of unstable blocks in underground openings. Int J Rock Mech Min Sci 39(6):807–813

    Article  Google Scholar 

  • Stavropoulou M (2014) Discontinuity frequency and block volume distribution in rock masses. Int J Rock Mech Min Sci 65:62–74

    Google Scholar 

  • Sturzenegger M, Stead D (2009) Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts. Eng Geol 106(3):163–182

    Article  Google Scholar 

  • Tonon F, Kottenstette J (2006) Laser and photogrammetric methods for rock face characterization. Report on a workshop held in Golden, Colorado

  • Turanboy A (2010) A geometric approach for natural rock blocks in engineering structures. Comput Geosci 14(4):565–577

    Article  Google Scholar 

  • Turanboy A, Ulker E (2008) LIP-RM: an attempt at 3D visualization of in situ rock mass structures. Comput Geosci 12(2):181–192

    Article  Google Scholar 

  • Van Knapen B, Slob S (2006) Identification and characterisation of rock mass discontinuity sets using 3D laser scanning. IAEG 2006 Geological Society of London Paper 438

  • Wang L, Yamashita S, Sugimoto F, Pan C, Tan G (2003) A methodology for predicting the in situ size and shape distribution of rock blocks. Rock Mech Rock Eng 36(2):121–142

    Article  Google Scholar 

  • Warburton P (1983) Applications of a new computer model for reconstructing blocky rock geometry-analysing single block stability and identifying keystones. 5th ISRM Congress

  • Warburton P (1985) A computer program for reconstructing blocky rock geometry and analyzing single block stability. Comput Geosci 11(6):707–712

    Article  Google Scholar 

  • Yarahmadi R, Bagherpour R, Kakaie R, Mirzaie NH, Yari M (2014) Development of 2D computer program to determine geometry of rock mass blocks. Int J Min Sci Technol 24(2):191–194

    Article  Google Scholar 

  • Zhang Y, Xiao M, Chen J (2010) A new methodology for block identification and its application in a large scale underground cavern complex. Tunn Undergr Space Technol 25(2):168–180

    Article  Google Scholar 

  • Zhang Y, Xiao M, Ding X, Wu A (2012) Improvement of methodology for block identification using mesh gridding technique. Tunn Undergr Space Technol 30:217–229

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Yarahmadi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yarahmadi, R., Bagherpour, R., Sousa, L.M.O. et al. How to determine the appropriate methods to identify the geometry of in situ rock blocks in dimension stones. Environ Earth Sci 74, 6779–6790 (2015). https://doi.org/10.1007/s12665-015-4672-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-015-4672-4

Keywords

Navigation