Environmental Earth Sciences

, Volume 74, Issue 9, pp 6665–6679 | Cite as

Diagenetic processes and sediment–water exchanges of heavy metals in the Mejerda River Delta (Gulf of Tunis)

  • Mohamed Amine Hellali
  • Noureddine Zaaboub
  • Walid Oueslati
  • Ayed Added
  • Lotfi Aleya
Original Article

Abstract

An in situ benthic flux study of iron (Fe), manganese (Mn), lead (Pb), zinc (Zn), cadmium (Cd), copper (Cu) and cobalt (Co) was conducted at three stations at the Mejerda River outlet in the Gulf of Tunis, at depths of 10, 20 and 40 m in March and August 2012. Simultaneously, three sedimentary cores were taken at the same locations to evaluate the diffusive flux of these heavy metals and to determine the early diagenetic mechanisms occurring below the sediment–water interface and their impact on heavy metal mobility. The concentrations of Fe2+ in pore waters were similar to those observed in the rest of the Gulf of Tunis; flux, both benthic (275 µmol m−2 day−1) and diffusive (9 µmol m−2 day−1), confirmed that sediment was a source of Fe2+ for the water column, at least for the 10- and 20-m stations. The diffusive flux of Mn2+ was greater in August (11–14 µmol m−2 day−1) than in March (1–2.6 µmol m−2 day−1), representing 8–15 % of benthic flux and indicating that, as for Fe, sediment is a source of Mn2+ for the water column, especially in August. Mn2+ is produced before Fe2+, which corresponds to the overall pattern of early diagenesis. In March, the production of Mn2+ and Fe2+ takes place in the lower layers of the sediment, probably due to agitation and resuspension occurring at the sediment–water interface. The concentrations of Pb2+ and Zn2+ were higher in this study with reference to the corresponding concentrations in the coastal areas, revealing an anthropogenic activity on the Mejerda River, Ghar El Melh Lagoon (old Mejerda outlet) and the Khlij Channel as the main vectors.

Keywords

Late diagenesis Benthic flux Diffusive flux Sediment–water exchanges Heavy metals Tunisia 

Notes

Acknowledgments

This study was made possible by the Tunisian (Institut National des Sciences et Technologies de la Mer, Laboratoire des Ressources Minérales et Environnement, Faculté des Sciences de Tunis)–French (Chrono-Environment Laboratory, Besançon, UMR CNRS 6249) cooperation project. We would like to thank all the participants for their active participation and valuable contributions.

References

  1. Added A (2002) Cycles biogéochimiques des sels nutritifs, du fer, du manganèse et du soufre dans les sédiments de deux systèmes côtiers du nord de la Tunisie : lagune de Ghar El Melh et lac nord de Tunis. PhD thesis Université de Tunis El ManarGoogle Scholar
  2. Aissaoui A, Dhib A, Reguera B, Ben Hassine OK, Turki S, Aleya L (2014) First evidence of cell deformation occurrence during a Dinophysis bloom along the shores of the Gulf of Tunis (SW Mediterranean Sea). Harmful Algae 39:191–201CrossRefGoogle Scholar
  3. Alaoui MM, Aleya L (1995) Assessment of the eutrophication of Al Massira reservoir (Morocco) by means of a survey of the biogeochemical balance of phosphorus. Hydrobiologia 297:75–82CrossRefGoogle Scholar
  4. Aller RC (1978) The effects of animal-sediment interaction on geochemical processes near the sediment-water interface. In Wiley ML (ed) Estuarine interactions. Academic Press, New York, pp 157–172Google Scholar
  5. Belabed B, Laffray X, Dhib A, Fertouna-Bellakhal M, Turki S, Aleya L (2013) Factors contributing to heavy metal accumulation in sediments and in the intertidal mussel Perna perna in the Gulf of Annaba (Algeria). Mar Pollut Bull 74:477–489CrossRefGoogle Scholar
  6. Ben Salem Z, Capelli N, Grisey E, Baurand PE, Ayadi H, Aleya L (2014) First evidence of fish genotoxicity induced by heavy metals from landfill leachates: the advantage of using the RAPD-PCR technique. Ecotoxicol Environ Saf 101:90–96CrossRefGoogle Scholar
  7. Boudreau BP (1997) Diagenetic models and their implementation. Springer, New YorkGoogle Scholar
  8. Brahim M, Atoui A, Sammari C, Aleya L (2015) Surface sediment dynamics along with hydrodynamics along the shores of Tunis Gulf (north-eastern Mediterranean). J Afr Earth Sci 103:30–41CrossRefGoogle Scholar
  9. Canavan RW, Slomp CP, Jourabchi P, Van Cappelen P, Laverman AM, Van Den Berg GA (2006) Organic matter mineralization in sediment of a coastal freshwater lake and response to salinization. Geochim Cosmochim Acta 90:2836–2855CrossRefGoogle Scholar
  10. Canfield DE, Jorgensen BB, Fossing H, Glud R, Gundersen J, Ramsing NB, Thamdrup B, Hansen JW, Nielsen LP, Hall POJ (1993a) Pathways of organic carbon oxidation in three continental margin sediments. Mar Geol 113:27–40CrossRefGoogle Scholar
  11. Canfield DE, Thamdrup B, Hansen JW (1993b) The anaerobic degradation of organic matter in Danish coastal sediments iron reduction, manganese reduction and sulfate reduction. Geochim Cosmochim Acta 57:3867–3883CrossRefGoogle Scholar
  12. Ciceri G, Maran S, Martinotti W, Queirazza G (1992) Geochemical cycling of heavy metals in a marine coastal area—benthic flux determination from pore water profiles and in situ measurements using benthic chambers. Hydrobiologia 235:501–517CrossRefGoogle Scholar
  13. Emerson S, Jahnke R, Heggie D (1984) Sediment-exchange in shallow water estuarine sediments. J Mar Res 42:709–730CrossRefGoogle Scholar
  14. Essoni N (1998) Etude de la dynamique des sels nutritifs et des métaux lourds en Relation avec la sédimentologie et l’hydrodynamique dans le large du golfe de Tunis. PhD thesis. Université De Tunis IIGoogle Scholar
  15. Froelich PN, Klinkhammer GP, Bender ML, Luedtke NA, Heath GR, Cullen D, Dauphin P, Hammond D, Hartman B, Maynard V (1979) Early oxidation of organic matter in pelagic sediments of the Eastern Equatorial Atlantic: suboxic diagenesis. Geochim Cosmochim Acta 43:1075–1090CrossRefGoogle Scholar
  16. Gobeil C, Silverberg N, Sundby B, Cossa D (1987) Cadmium diagenesis in Laurentian Trouth sediments. Geochim Comochim Acta 51:589–596CrossRefGoogle Scholar
  17. Helali MA (2010) Géochimie des sédiments marins de surface dans le delta de l’Oued Mejerda. Mastère en Géologie. Université De Tunis-El ManarGoogle Scholar
  18. Helali MA, Oueslati W, Zaaboub N, Added A, Abdeljaouad S (2013) Geochemistry of marine sediments in the Mejerda River delta, Tunisia. Chem Speciat Bioavailab 25:247–257CrossRefGoogle Scholar
  19. Helland A, Torgeir B (2002) Transport and sedimentation of Cu in a microtidal estuary, SE Norway. Mar Pollut Bull 44:149–155CrossRefGoogle Scholar
  20. Hesse R (1990) Early diagenetic pore water/sediment interaction: modern offshore basins. In: McIlreath IA, Morrow DW (eds) Diagenesis: St. John’s. Geological Association of Canada, Newfoundland, pp 277–316Google Scholar
  21. Hulth S, Aller RC, Gibert F (1999) Coupled anoxic nitrification/manganese reduction in marine sediments. Geochim Cosmochim Acta 63:49–66CrossRefGoogle Scholar
  22. Martin ST (2005) Precipitation and dissolution of iron and manganese oxides. In: Grassian VH (ed) Environmental catalysis. CRC Press, Boca RatonGoogle Scholar
  23. Mason RP, Kim EH, Cornwell J, Heyes D (2006) An examination of the factors influencing the flux of mercury, methylmercury and other constituents from estuarine sediment. Mar Chem 102:96–110CrossRefGoogle Scholar
  24. Mauldenhauer KM, Christoph Z, Dominik F (2008) Heavy metals as indicators for Holocene sediment provenance in a semi-arid Mediterranean catchment in northern Tunisia. Quat Int 189:129–134CrossRefGoogle Scholar
  25. Mccaffrey RJ, Richard J et al (1980) The relation between pore water chemistry and benthic fluxes of nutrients and manganese in Narragansett Bay, Rhode Island. Limnol Oceanogr 25:31–44CrossRefGoogle Scholar
  26. Morel FMM, Hering JG (1993) Principles and applications of aquatic chemistry. Wiley, New YorkGoogle Scholar
  27. Morley NH, Burton JD, Tankere SPC, Martin JM (1997) Distribution and behavior of some dissolved trace metals in the western Mediterranean Sea. Deep Res Part II Trop Stud Oceanogr 44:675–691CrossRefGoogle Scholar
  28. Oueslati W (2011) Cycles biogéochimiques des métaux lourds dans les sédiments marins de la lagune de Ghar El Melh. PhD thesis, Université Tunis El ManarGoogle Scholar
  29. Petersen W, Wallmann K, Li PL, Schroeder F, Knauth HD (1995) Exchange of trace elements at the sediment–water interface during early diagenesis processes. Mar Freshw Res 46:19–26Google Scholar
  30. Point D, Monperrus M, Tessier E, Amouroux D, Grall J, Chauvaud L, Thouzeau G, Jean F, Amice EA, Leynaert J, Clavier Donard OFX (2007) Benthic fluxes of metals (Cu, Cd, Pb, Mn, U and Hg) and organometals (MMHg, TBT, DBT and MBT) in the eutrophicated Thau Lagoon (Mediterranean Coast, France): role of the biological activity. Estuar Coast Shelf Sci 72:457–471CrossRefGoogle Scholar
  31. Postma D (1985) Concentration of Mn and separation from Fe in sediments—I. Kinetics and stoichiometry of the reaction between birnessite and dissolved Fe(II) at 10 °C. Geochim Cosmochim Acta 49:1023–1033CrossRefGoogle Scholar
  32. Rosenthal Y, Lam P, Boyle EA, Thomson J (1995) Authigenic cadmium enrichments in suboxic sediments: precipitation and post depositional mobility. Earth Planet Sci Lett 132:99–111CrossRefGoogle Scholar
  33. Sawlan JJ, Murray JW (1983) Trace-metal remobilization in the interstitial waters of red clay and hemipelagic marine-sediments. Earth Planet Sci Lett 64:213–230CrossRefGoogle Scholar
  34. Scholz F, Neumann T (2007) Trace element diagenesis in pyrite-rich sediments of the Achterwasser lagoon, SW Baltic Sea. Mar Chem 107:516–532CrossRefGoogle Scholar
  35. Schulz HD, Zabel M (2006) Marine geochemistry. Springer, BerlinGoogle Scholar
  36. Szefer P (1991) Interphase and trophic relationships of metals in a southern Baltic ecosystem. Sci Tot Environ 101:201–215CrossRefGoogle Scholar
  37. Tessier E (2012) Diagnostic de la contamination sedimentaire par les metaux/metalloids dans la rade de Toulon et Mecanismes controlant leur mobilité. PhD thesis, Chimie de l’environnement, Université du Sud Toulon VarGoogle Scholar
  38. Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bact Rev 41:100–180Google Scholar
  39. Thomson J, Higgs NC, Jarvis I, Hydes DJ, Colley S, Wilson TRS (1986) The behaviour of manganese in Atlantic carbonate sediments. Geochim Cosmochim Acta 50:1807–1818CrossRefGoogle Scholar
  40. Turetta C, Capodaglio G, Cairns W, Rabar S, Cescon P (2005) Benthic fluxes of trace metals in the lagoon of Venice. Microchem J 79:149–158CrossRefGoogle Scholar
  41. Van Cappellen P, Wang Y (1996) Cycling of iron and manganese in surface sediments: a general theory for the coupled transport and reaction of carbon, oxygen, nitrogen, sulfur, iron and manganese. Am J Sci 296:197–243CrossRefGoogle Scholar
  42. Warnken KW, Gill GA, Griffin LL, Santchi PH (2001) Sediment-water exchange of Mn, Fe, Ni and Zn in Galveston Bay, Texas. Mar Chem 73:215–231CrossRefGoogle Scholar
  43. Welch SA, Lyons WB, Kling CA (1990) A coprecipitation technique for determining trace metal concentrations in iron-rich saline solutions. Environ Technol Lett 11:141–144CrossRefGoogle Scholar
  44. Widerlund A, Roos P, Gunneriusson L, Ingri J, Holmström H (2002) Early diagenesis and isotopic composition of lead in Lake Laisan, northern Sweden. Chem Geol 189:183–197CrossRefGoogle Scholar
  45. Williams MR, Millward GE, Nimmo M, Fones G (1998) Fluxes of Cu, Pb and Mn to the Northeastern Irish Sea: the importance of sedimental and atmospheric inputs. Mar Pollut Bull 36:366–375Google Scholar
  46. Wilson TRS, Thompson J, Colley S, Hydes DJ, Higgs NC (1985) Early organic diagenesis: significance of progressive subsurface oxidation fronts in pelagic sediments. Geochim Cosmochim Acta 49:811–822CrossRefGoogle Scholar
  47. Zaaboub N, Ounis A, Helali MA, Béjaoui B, Lillebø AI, Ferreira da Silva E, Aleya L (2014a) Phosphorus speciation in sediments and assessment of nutrient exchange at the water-sediment interface in a Mediterranean lagoon: implications for management and restoration. Ecol Eng 73:115–125CrossRefGoogle Scholar
  48. Zaaboub N, Oueslati W, Helali MA, Abdeljaouad S, Huertas JF, Galindo AL (2014b) Trace elements in different marine sediment fractions of the Gulf of Tunis (Central Mediterranean Sea). Chem Speciat Bioavailab 26:1–12CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Mohamed Amine Hellali
    • 1
  • Noureddine Zaaboub
    • 2
  • Walid Oueslati
    • 1
  • Ayed Added
    • 1
  • Lotfi Aleya
    • 3
  1. 1.Laboratoire des Ressources Minérales et Environnement, Département de Géologie, Faculté des Sciences de TunisUniversité Tunis-El ManarTunisTunisia
  2. 2.Laboratoire du Milieu MarinInstitut National des Sciences et Technologies de la MerSalammbôTunisia
  3. 3.Laboratoire de Chrono-Environnement, UMR CNRS 6249Université de Bourgogne Franche-ComtéBesançon CedexFrance

Personalised recommendations