Advertisement

Environmental Earth Sciences

, Volume 74, Issue 3, pp 1871–1881 | Cite as

Glacier surface motion pattern in the Eastern part of West Kunlun Shan estimation using pixel-tracking with PALSAR imagery

  • Shiyong Yan
  • Guang Liu
  • Yunjia Wang
  • Zbigniew Perski
  • Zhixing Ruan
Thematic Issue

Abstract

Mountain glacier is considered as one of the most sensitive natural indicators of climate change. Glacier surface motion distribution in West Kunlun Shan (WKS) has been attracting considerable attention and represents a fundamental glacier parameter for better understanding glacier dynamics, ice mass balance, and even for the climate change. This paper would present the accurate ice motion observation of mountain glacier in eastern part of WKS by the refined pixel-tracking method with phased array type L-band synthetic aperture radar images acquired on December 13, 2008 and January 28, 2009. The standard deviation values in nonglacial area before/after topographic effect compensation are 0.61 and 0.43 m, respectively, during 46-day temporal interval. In addition, the terrain almost is a determining factor of ice velocity distribution in study area because the elevation of topography is generally shown to be positive correlated with glacier surface velocity along the central line. Furthermore, with estimated detailed glacier surface movement distribution pattern, we found that the continental glaciers were actively moving with spatially variable ice motion, while the icecaps maintain the stable status without apparent motion on most part of surface. Therefore, the refined SAR-based pixel-tracking method, including topographic effect compensation operation, provides a useful and robust tool to map and measure the glacier motion in mountain area with complex terrain.

Keywords

Mountain glacier Ice surface velocity Pixel-tracking technique West Kunlun Shan ALOS/PALSAR 

Notes

Acknowledgments

The work was supported by the Funds from International Cooperation and Exchange of the National Natural Science Foundation of China (No. 41120114001), Key Program for International Cooperation Projects of CAS (No. 131211KYSB20150035), and Fundamental Research Funds for the Central Universities (No. 2015QNA32). The study also was partially supported by a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions. The ALOS/PALSAR SAR data employed in this study were archived and provided by the Japan Aerospace Exploration Agency (JAXA).

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Berthier E, Raup B, Scambos T (2003) New velocity map and mass-balance estimate of Mertz Glacier, East Antarctica, derived from Landsat sequential imagery. J Glaciol 49(167):503–511. doi: 10.3189/172756503781830377 CrossRefGoogle Scholar
  2. Ciappa A, Pietranera L, Battazza F (2010) Perito Moreno Glacier (Argentina) flow estimation by COSMO SkyMed sequence of high-resolution SAR-X imagery. Remote Sens Environ 114(9):2088–2096. doi: 10.1016/j.rse.2010.04.014 CrossRefGoogle Scholar
  3. Cuffey KM, Paterson WSB (2010) The physics of glaciers, 4th edn. Elsevier, AmsterdamGoogle Scholar
  4. Debella-Gilo M, Kääb A (2012) Measurement of surface displacement and deformation of mass movements using least squares matching of repeat high resolution satellite and aerial images. Remote Sens 4(1):43–67. doi: 10.3390/rs4010043 CrossRefGoogle Scholar
  5. Dyurgerov MB, Meier MF (2000) Twentieth century climate change: evidence from small glaciers. Proc Natl Acad Sci 97(4):1406–1411. doi: 10.1073/pnas.97.4.1406 CrossRefGoogle Scholar
  6. Erten E, Reigber A, Hellwich O, Prats P (2009) Glacier velocity monitoring by maximum likelihood texture tracking. IEEE Trans Geosci Remote Sens 47(2):394–405. doi: 10.1109/tgrs.2008.2009932 CrossRefGoogle Scholar
  7. Haemmig C, Huss M, Keusen H, Hess J, Wegmueller U, Ao Z, Kulubayi W (2014) Hazard assessment of glacial lake outburst floods from Kyagar glacier, Karakoram mountains, China. Ann Glaciol 55(66):34–44. doi: 10.3189/2014AoG66A001 CrossRefGoogle Scholar
  8. Harant O, Bombrun L, Vasile G, Ferro-Famil L, Gay M (2011) Displacement estimation by maximum-likelihood texture tracking. IEEE J Sel Top Signal Process 5(3):398–407. doi: 10.1109/jstsp.2010.2100365 CrossRefGoogle Scholar
  9. Huang L, Li Z (2011) Comparison of SAR and optical data in deriving glacier velocity with feature tracking. Int J Remote Sens 32(10):2681–2698. doi: 10.1080/01431161003720395 CrossRefGoogle Scholar
  10. Janke JR (2005) Long-term flow measurements (1961–2002) of the Arapaho, Taylor, and Fair rock glaciers, Front Range, Colorado. Phys Geogr 26(4):313–336. doi: 10.2747/0272-3646.26.4.313 CrossRefGoogle Scholar
  11. Jiang ZL, Liu SY, Peters J, Lin J, Long SC, Han YS, Wang X (2012) Analyzing Yengisogat Glacier surface velocities with ALOS PALSAR data feature tracking, Karakoram, China. Environ Earth Sci 67(4):1033–1043. doi: 10.1007/s12665-012-1563-9 CrossRefGoogle Scholar
  12. Kääb A (2005) Combination of SRTM3 and repeat ASTER data for deriving alpine glacier flow velocities in the Bhutan Himalaya. Remote Sens Environ 94(4):463–474. doi: 10.1016/j.rse.2004.11.003 CrossRefGoogle Scholar
  13. Ke CQ, Kou C, Ludwig R, Qin X (2013) Glacier velocity measurements in the eastern Yigong Zangbo basin, Tibet, China. J Glaciol 59(218):1060–1068. doi: 10.3189/2013JoG12J234 CrossRefGoogle Scholar
  14. Kehrwald NM, Thompson LG, Tandong Y, Mosley-Thompson E, Schotterer U, Alfimov V, Beer J, Eikenberg J, Davis ME (2008) Mass loss on Himalayan glacier endangers water resources. Geophys Res Lett 35:L22503. doi: 10.1029/2008GL035556 CrossRefGoogle Scholar
  15. Kumar V, Venkataraman G, Hogda KA, Larsen Y (2013) Estimation and validation of glacier surface motion in the northwestern Himalayas using high-resolution SAR intensity tracking. Int J Remote Sens 34(15):5518–5529. doi: 10.1080/01431161.2013.792965 CrossRefGoogle Scholar
  16. Lambrecht A, Mayer C, Aizen V, Floricioiu D, Surazakov A (2014) The evolution of Fedchenko glacier in the Pamir, Tajikistan, during the past eight decades. J Glaciol 60(220):233–244. doi: 10.3189/2014JoG13J110 CrossRefGoogle Scholar
  17. Li S, Benson C, Gens R, Lingle C (2008) Motion patterns of Nabesna Glacier (Alaska) revealed by interferometric SAR techniques. Remote Sens Environ 112(9):3628–3638. doi: 10.1016/j.rse.2008.05.015 CrossRefGoogle Scholar
  18. Luckman A, Quincey D, Bevan S (2007) The potential of satellite radar interferometry and feature tracking for monitoring flow rates of Himalayan glaciers. Remote Sens Environ 111(2–3):172–181. doi: 10.1016/j.rse.2007.05.019 CrossRefGoogle Scholar
  19. Ma Q, Zheng B, Jiao K, Iwata S, Fushimi H (1989) Glacial geomorphological features in upper reaches of Yurunkax River on the north slope of the West Kunlun Mountains. Bull Glacier Res 7:139–144Google Scholar
  20. Mohr JJ, Reeh N, Madsen SN (1998) Three-dimensional glacial flow and surface elevation measured with radar interferometry. Nature 391:273–276. doi: 10.1038/34635 CrossRefGoogle Scholar
  21. Nakamura K, Doi K, Shibuya K (2010) Fluctuations in the flow velocity of the Antarctic Shirase Glacier over an 11-year period. Polar Sci 4(3):443–455. doi: 10.1016/j.polar.2010.04.010 CrossRefGoogle Scholar
  22. Nobakht M, Motagh M, Wetzel HU, Roessner S, Kaufmann H (2014) The Inylchek Glacier in Kyrgyzstan, Central Asia: insight on surface kinematics from optical remote sensing imagery. Remote Sens 6(1):841–856. doi: 10.3390/rs6010841 CrossRefGoogle Scholar
  23. Palmer S, Shepherd A, Bjornsson H, Palsson F (2009) Ice velocity measurements of Langjökull, Iceland, from interferometric synthetic aperture radar (InSAR). J Glaciol 55(193):834–838. doi: 10.3189/002214309790152573 CrossRefGoogle Scholar
  24. Papadaki ES (2014) Monitoring subsidence at Messara basin using radar interferometry. Environ Earth Sci 72(6):1965–1977. doi: 10.1007/s12665-014-3105-0 CrossRefGoogle Scholar
  25. Rankl M, Kienholz C, Braun M (2014) Glacier changes in the Karakoram region mapped by multimission satellite imagery. Cryosphere 8(3):977–989. doi: 10.5194/tc-8-977-2014 CrossRefGoogle Scholar
  26. Rignot E, Mouginot J, Scheuchl B (2011) Ice flow of the antarctic ice sheet. Science 333(6048):1427–1430. doi: 10.1126/science.1208336 CrossRefGoogle Scholar
  27. Sansosti E, Berardino P, Manunta M, Serafino F, Fornaro G (2006) Geometrical SAR image registration. IEEE Trans Geosci Remote Sens 44(10):2861–2870. doi: 10.1109/TGRS.2006.875787 CrossRefGoogle Scholar
  28. Scherler D, Leprince S, Strecker MR (2008) Glacier-surface velocities in alpine terrain from optical satellite imagery—accuracy improvement and quality assessment. Remote Sens Environ 112(10):3806–3819. doi: 10.1016/j.rse.2008.05.018 CrossRefGoogle Scholar
  29. Scherler D, Bookhagen B, Strecker MR (2011) Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nat Geosci 4(3):156–159. doi: 10.1038/ngeo1068 CrossRefGoogle Scholar
  30. Schubert A, Faes A, Kääb A, Meier E (2013) Glacier surface velocity estimation using repeat TerraSAR-X images: wavelet- vs. correlation-based image matching. ISPRS J Photogramm Remote Sens 82:49–62. doi: 10.1016/j.isprsjprs.2013.04.010 CrossRefGoogle Scholar
  31. Shangguan D, Liu S, Ding Y, Li J, Zhang Y, Ding L (2007) Glacier changes in the West Kunlun Shan from 1970 to 2001 derived from Landsat TM/ETM+ and Chinese glacier inventory data. Ann Glaciol 46(1):204–208. doi: 10.3189/172756407782871693 CrossRefGoogle Scholar
  32. Singleton A, Li Z, Hoey T, Muller JP (2014) Evaluating sub-pixel offset techniques as an alternative to D-InSAR for monitoring episodic landslide movements in vegetated terrain. Remote Sens Environ 147:133–144. doi: 10.1016/j.rse.2014.03.003 CrossRefGoogle Scholar
  33. Strozzi T, Luckman A, Murray T, Wegmuller U, Werner CL (2002) Glacier motion estimation using SAR offset-tracking procedures. IEEE Trans Geosci Remote Sens 40(11):2384–2391. doi: 10.1109/TGRS.2002.805079 CrossRefGoogle Scholar
  34. Strozzi T, Kouraev A, Wiesmann A, Wegmueller U, Sharov A, Werner C (2008) Estimation of Arctic glacier motion with satellite L-band SAR data. Remote Sens Environ 112(3):636–645. doi: 10.1016/j.rse.2007.06.007 CrossRefGoogle Scholar
  35. Sugiyama S, Fukui K, Fujita K, Tone K, Yamaguchi S (2013) Changes in ice thickness and flow velocity of Yala Glacier, Langtang Himal, Nepal, from 1982 to 2009. Ann Glaciol 54(64):157–162. doi: 10.3189/2013AoG64A111 CrossRefGoogle Scholar
  36. Sundal AV, Shepherd A, Nienow P, Hanna E, Palmer S, Huybrechts P (2011) Melt-induced speed-up of Greenland ice sheet offset by efficient subglacial drainage. Nature 469(7331):522–U583. doi: 10.1038/nature09740 CrossRefGoogle Scholar
  37. Thompson LG, MosleyThompson E, Davis ME, Lin PN, Dai J, Bolzan JF (1995) A 1000 year climatic ice-core record from the Guliya Ice Cap, China: its relationship to global climate variability. Ann Glaciol 21:175–181Google Scholar
  38. Trouye E, Vasile G, Gay M, BombrunL Grussenmeyer P, Landes T, Nicolas JM, Bolon P, Petillot I, Julea A, Valet L, Chanussot J, Koehl M (2007) Combining airborne photographs and spaceborne SAR data to monitor temperate glaciers: potentials and limits. IEEE Trans Geosci Remote Sens 45(4):905–924. doi: 10.1109/tgrs.2006.890554 CrossRefGoogle Scholar
  39. Yan S, Guo H, Liu G, Ruan Z (2013) Mountain glacier displacement estimation using a DEM-assisted offset tracking method with ALOS/PALSAR data. Remote Sens Lett 4(5):494–503. doi: 10.1080/2150704x.2012.754561 CrossRefGoogle Scholar
  40. Yao T, Pu J, Lu A, Wang Y, Yu W (2007) Recent glacial retreat and its impact on hydrological processes on the Tibetan Plateau, China, and surrounding regions. Arct Antarct Alp Res 39(4):642–650. doi:10.1657/1523-0430(07-510)[YAO]2.0.CO;2Google Scholar
  41. Yasuda T, Furuya M (2013) Short-term glacier velocity changes at West Kunlun Shan, Northwest Tibet, detected by Synthetic Aperture Radar data. Remote Sens Environ 128:87–106. doi: 10.1016/j.rse.2012.09.021 CrossRefGoogle Scholar
  42. Yun SH, Zebker H, Segall P, Hooper A, Poland M (2007) Interferogram formation in the presence of complex and large deformation. Geophys Res Lett 34(12):L12305. doi: 10.1029/2007GL029745 CrossRefGoogle Scholar
  43. Zhang Z, Jiao K (1987) Modern glaciers on the south slope of West Kunlun Mountains (in Akasyqin Lake and Guozha Co Lake drainage areas). Bull Glacier Res 5:85–91Google Scholar
  44. Zhou J, Li Z, Li X, Liu S, Chen Q, Xie C, Tian B (2011) Movement estimate of the Dongkemadi Glacier on the Qinghai-Tibetan Plateau using L-band and C-band spaceborne SAR data. Int J Remote Sens 32(22):6911–6928. doi: 10.1080/01431161.2010.517225 CrossRefGoogle Scholar
  45. Zhou J, Li Z, Guo W (2014) Estimation and analysis of the surface velocity field of mountain glaciers in Muztag Ata using satellite SAR data. Environ Earth Sci 71(8):3581–3592. doi: 10.1007/s12665-013-2749-5 CrossRefGoogle Scholar
  46. Zwally HJ, Abdalati W, Herring T, Larson K, Saba J, Steffen K (2002) Surface melt-induced acceleration of Greenland ice-sheet flow. Science 297(5579):218–222. doi: 10.1126/science.1072708 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Shiyong Yan
    • 1
  • Guang Liu
    • 2
  • Yunjia Wang
    • 1
  • Zbigniew Perski
    • 3
  • Zhixing Ruan
    • 2
  1. 1.Jiangsu Key Laboratory of Resources and Environmental Engineering, School of Environment Science and Spatial InformaticsChina University of Mining and TechnologyXuzhouChina
  2. 2.Institute of Remote Sensing and Digital EarthChinese Academy of SciencesBeijingChina
  3. 3.Polish Geological Institute - National Research Institute, Carphatian BranchCracowPoland

Personalised recommendations