Advertisement

Environmental Earth Sciences

, Volume 74, Issue 5, pp 4109–4118 | Cite as

A GIS-based method for predicting groundwater discharge areas in esker aquifers in the Boreal region

  • Riku EskelinenEmail author
  • Pertti Ala-aho
  • Pekka M. Rossi
  • Bjørn Kløve
Original Article

Abstract

In the Boreal region, anticline eskers aquifers are recharged in upland hillslopes and water discharges in the surrounding lowlands. Organic peat soils often confine the aquifer discharge area and drainage of these confining peat layers can decrease the flow resistance in the peat soil, which may cause unintentional groundwater level drawdown. This poses a risk to groundwater bodies and their good water status in the Boreal region. To increase awareness of the risk areas and to assess potential areas for drainage restoration, a model based on geographical information systems (GIS) was developed to predict the locations of high groundwater discharge. The output of the model is a map highlighting the potential areas where groundwater is more likely to discharge. The model output was validated with stream flow data collected from two eskers located in Finland. The developed GIS model is recommended as a tool to delineate groundwater protection areas where drainage of the peat soil should not be allowed and for assessing areas where such drainage networks could be restored to protect vulnerable groundwater systems.

Keywords

Groundwater vulnerability Groundwater management Drainage Geographical information systems 

Notes

Acknowledgments

This work was funded by the 7th framework project GENESIS (226536) and Maa- ja vesitekniikan tuki r.y.

Supplementary material

12665_2015_4491_MOESM1_ESM.jpg (9.3 mb)
Supplementary material 1 (JPEG 9516 kb) Presentation of validation data surrounding the Rokua esker

Supplementary material 2 (MPG 34182 kb) A video comparison between HGS and model1

12665_2015_4491_MOESM3_ESM.tif (1.3 mb)
Supplementary material 3 (TIFF 1367 kb) Fieldwork results at different parts of the drainage networks surrounding the Rokua esker

References

  1. Aapala K, Similä M, Penttinen J (2013) Handbook for the restoration of drained peatlands (abstract in English). Nat Prot Publ Metsähall B 188:301Google Scholar
  2. Ala-aho P, Rossi PM, Isokangas E, Klöve B (2015) Fully integrated surface–subsurface flow modelling of groundwater–lake interaction in an esker aquifer: model verification with stable isotopes and airborne thermal imaging. J Hydrol 522:391–406. doi: 10.1016/j.jhydrol.2014.12.054 CrossRefGoogle Scholar
  3. Aller L, Bennett T, Lehr J, Petty RJ, Hackett G (1987) DRASTIC:  a standardized system for evaluating ground water pollution potential using hydrogeologic settings. U.S. Environmental Protection Agency, Ada, OklahomaGoogle Scholar
  4. Aquanty (2013) HydroGeoSphere user manual. Release 1.0. Waterloo, Aquanty IncGoogle Scholar
  5. Britschgi R, Antikainen M, Ekholm-Peltonen M, Hyvärinen V, Nylander E, Siiro P, Suomela T (2009) Pohjavesialueiden kartoitus ja luokitus. Suomen Ympäristökeskus, Helsinki. ISBN 978-952-11-3375-6 (Online) http://www.ymparisto.fi/download.asp?contentid=102636&lan=fi. Accessed 15 May 2013 (in Finnish)
  6. Brunner P, Simmons CT (2012) HydroGeoSphere: a fully integrated, physically based hydrological model. Gr Water 50(2):170–176. doi: 10.1111/j.1745-6584.2011.00882.x CrossRefGoogle Scholar
  7. Council Directive (EC) 2000/60/EC (2000) of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policyGoogle Scholar
  8. CSC 2012 PaITuli-geospatial data service (Online). http://www.csc.fi/english/research/sciences/geo/gis/paituli/index_html. Accessed 23 Oct 2012
  9. DCLG 2009 Multi-criteria analysis: a manual (Online). https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/7612/1132618.pdf. Accessed 29 Jan 2015
  10. Fetter CW (2001) Applied hydrogeology, 4th edn. Prentice hall, USA. ISBN 0-13-088239-9. p 598Google Scholar
  11. Freeze R, Cherry J (1979) Groundwater. Prentice-Hall, Englewood Cliffs, p 604Google Scholar
  12. Häikiö J (2008) The peatlands and peat reserves of Vaala part 1. Geological Survey of Finland, Report of Peat Investigation 383:108 (in Finnish)Google Scholar
  13. Jenks G (1967) The data model concept in statistical mapping. Int Yearb Cartogr 7:186–190Google Scholar
  14. Katko T, Lipponen M, Rönkä E (2006) Groundwater use and policy in community water supply in Finland. Hydrogeol J 14:69–78. doi: 10.1007/s10040-004-0351-3 CrossRefGoogle Scholar
  15. Kløve B, Ala-aho P, Allan A, Bertrand G, Druzynska E, Ertürk A, Goldscheider N, Henry S, Karakaya N, Karjalainen TP, Koundouri P, Kværner J, Lundberg A, Muotka T, Preda E, Pulido Velázquez M, Schipper P (2011) Groundwater dependent ecosystems: part II–ecosystem services and management under risk of climate change and land-use management. Environ Sci Policy 14:782–793. doi: 10.1016/j.envsci.2011.04.005 CrossRefGoogle Scholar
  16. Koundouri P, Kougea E, Stithou M, Ala-aho P, Eskelinen R, Karjalainen TP, Klove B, Pulido-Velazquez M, Reinikainen K, Rossi PM (2012) The value of scientific information on climate change: a choice experiment on Rokua esker, Finland. J Environ Econ Policy 1(1):85–102. doi: 10.1080/21606544.2011.647450 CrossRefGoogle Scholar
  17. Kupiainen V (2010) Groundwater discharge to forest ditches at Rokua esker area and restoration by ditch dams. University of Oulu, Master Thesis, Finland, p 68Google Scholar
  18. Lowry C, Walker J, Hunt R, Anderson M (2007) Identifying spatial variability of groundwater discharge in a wetland stream using a distributed temperature sensor. Water Resour Res. doi: 10.1029/2007WR006145 Google Scholar
  19. Lowry CS, Fratta D, Anderson MP (2009) Ground penetrating radar and spring formation in a groundwater dominated peat wetland. J Hydrol 373(1–2):68–79. doi: 10.1016/j.jhydrol.2009.04.023 CrossRefGoogle Scholar
  20. Mälkki E (1999) Pohjavesi ja pohjaveden ympäristö. Tammi, Finland, p 304Google Scholar
  21. MML (2010) National land survey of Finland, Basic map. Maps downloaded from PaITuli-geospatial data service (see CSC 2012)Google Scholar
  22. Omo-Irabor O, Olobaniyi S, Akunna J, Venus V, Maina J, Paradzayi C (2010) Mangrove vulnerability modelling in parts of Western Niger Delta, Nigeria using satellite images, GIS techniques and spatial multi-criteria analysis (SMCA). Environ Monit Assess 178(1–4):39–51. doi: 10.1007/s10661-010-1669-z Google Scholar
  23. Pajunen H (1990) Mires and peat reserves of Utajärvi, part V. Geological Survey of Finland, Report of Peat Investigation 241:133 (in Finnish)Google Scholar
  24. Pajunen H (1993) Mires and peat reserves of Utajärvi, part VI. Geological Survey of Finland, Report of Peat Investigation 269:27 (in Finnish)Google Scholar
  25. Pajunen H (2009) Mires and peat reserves of Muhos, Central Finland, part 4. Geological Survey of Finland, Report of Peat Investigation 397:70 (in Finnish)Google Scholar
  26. Rossi P, Ala-aho P, Ronkanen A-K, Klöve B (2012) Groundwater-surface water interaction between an aquifer and a drained fen. J Hydrol 432–433:52–60. doi: 10.1016/j.jhydrol.2012.02.026 CrossRefGoogle Scholar
  27. Rossi P, Ala-aho P, Doherty J, Kløve B (2014) Impact of peatland drainage and restoration on esker groundwater resources: modeling future scenarios for management. Hydrogeol J. doi: 10.1007/s10040-014-1127-z Google Scholar
  28. SYKE (2011) Finnish Environmental Institute, groundwater areas. Material downloaded from PaITuli-geospatial data service (see CSC 2012)Google Scholar
  29. Van Stempvoort D, Ewert L, Wassenaar L (1993) Aquifer vulnerability index: a GIS—compatible method for groundwater vulnerability mapping. Can Water Res J 18(1):25–37. doi: 10.4296/cwrj1801025 CrossRefGoogle Scholar
  30. Wilson L, Wilson J, Holden J, Johnstone I, Armstrong A, Morris M (2010) Recovery of water tables in Welsh blanket bog after drain blocking: discharge rates, time scales and the influence of local conditions. J Hydrol 391:377–386. doi: 10.1016/j.jhydrol.2010.07.042 CrossRefGoogle Scholar
  31. Wilson L, Wilson J, Holden J, Johnstone I, Armstrong A, Morris M (2011) Ditch blocking, water chemistry and organic carbon flux: evidence that blanket bog restoration reduces erosion and fluvial carbon loss. Sci Total Environ 409:2010–2018. doi: 10.1016/j.scitotenv.2011.02.036 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Riku Eskelinen
    • 1
    Email author
  • Pertti Ala-aho
    • 1
  • Pekka M. Rossi
    • 1
  • Bjørn Kløve
    • 1
  1. 1.Water Resources and Environmental Engineering Laboratory, Department of Process and Environmental EngineeringUniversity of OuluOuluFinland

Personalised recommendations