Environmental Earth Sciences

, Volume 74, Issue 8, pp 6431–6442 | Cite as

Community–environment relationships of riverine invertebrate communities in central Chinese streams

  • Sonja C. Jähnig
  • Deep Narayan Shah
  • Ram Devi Tachamo Shah
  • Fengqing Li
  • Qinghua Cai
  • Andrea Sundermann
  • Jonathan D. Tonkin
  • Sonja Stendera
Thematic Issue


Chinese rivers are both highly biodiverse and highly under pressure, hence an urgent need exists to understand ecological drivers and disentangle different scales of stressors to support water management. Our aims were to (1) determine the most influential variables for benthic invertebrate occurrence, (2) compare results related to communities as opposed to metrics and (3) examine the role of spatial scales with relevance to management. Benthic invertebrate sampling was performed at 37 sites in selected tributaries of the middle reaches of the Yangtze, covering an environmental gradient with a focus on organic pollution (stratified sampling design). Ten metrics commonly used in biomonitoring were derived and analysed in parallel to assemblage data. Environmental variables covered 74 parameters from three different spatial scales, namely local, reach and catchment scale. We ran a CCA with each of the three subsets to find out the significant determining/explanatory variables, followed by pCCA and pRDA (for metric data) with these variables with forward selection to determine single variables important for each subset; we further used variation portioning for benthic invertebrate data. A high percentage of overall variability (70 %) of the assemblage structure was explained, with catchment- and local-scale variables being almost equally important. Small-scale variables tended to be more important than large-scale variables for the metric-based approach but not for the assemblage approach. Our results emphasise the need for spatially explicit regional studies in freshwater systems and suggest testing multi-metric assessment approaches to tackle water management and environmental health questions in China.


Biomonitoring Hubei Land use Spatial scale Variation partitioning 



The present study was conducted in the framework of the DFG-NSFC cooperation group “EcoChange” (GZ465). During initial fieldwork, SCJ was funded by the German Federal Ministry of Education and Research and German Academic Exchange Service (BMBF and DAAD) within the programme “Study and research for sustainability: Yangtze region” with a research fellowship and by the Young scientist research award 2008 of the University of Duisburg-Essen. SCJ also acknowledges financial support by the research funding programme “LOEWE—Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz” of Hesse’s Ministry of Higher Education, Research and the Arts and by the BMBF for funding “GLANCE” (Global change effects in river ecosystems; 01LN1320A).

Supplementary material

12665_2015_4466_MOESM1_ESM.pdf (33 kb)
Supplementary material 1 (PDF 33 kb)
12665_2015_4466_MOESM2_ESM.pdf (17 kb)
Supplementary material 2 (PDF 17 kb)


  1. Allan JD (2004) Landscapes and riverscapes: the influence of land use on stream ecosystems. Annu Rev Ecol Evol Syst 35:257–284CrossRefGoogle Scholar
  2. Anderson MJ, Cribble NA (1998) Partitioning the variation among spatial, temporal and environmental components in a multivariate data set. Aust J Ecol 23(2):158–167. doi:10.1111/j.1442-9993.1998.tb00713.x CrossRefGoogle Scholar
  3. Astorga A, Heino J, Luoto M, Muotka T (2011) Freshwater biodiversity at regional extent: determinants of macroinvertebrate taxonomic richness in headwater streams. Ecography 34(5):705–713. doi:10.1111/j.1600-0587.2010.06427.x CrossRefGoogle Scholar
  4. Azrina MZ, Yap CK, Ismail AR, Ismail A, Tan SG (2006) Anthropogenic impacts on the distribution and biodiversity of benthic macroinvertebrates and water quality of the Langat River, Peninsular Malaysia. Ecotox Environ Safe 64(3):337–347. doi:10.1016/j.ecoenv.2005.04.003 CrossRefGoogle Scholar
  5. Beche LA, Statzner B (2009) Richness gradients of stream invertebrates across the USA: taxonomy- and trait-based approaches. Biodivers Conserv 18(14):3909–3930CrossRefGoogle Scholar
  6. Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055CrossRefGoogle Scholar
  7. Caschetto M, Barbieri M, Galassi DP et al (2014) Human alteration of groundwater–surface water interactions (Sagittario River, Central Italy): implication for flow regime, contaminant fate and invertebrate response. Environ Earth Sci 71(4):1791–1807. doi:10.1007/s12665-013-2584-8 CrossRefGoogle Scholar
  8. Chen Q (1959) Macroinvertebrates of Heilongjiang River and their status after building hydropower plants. Acta Sin Hydrobiol 2:147–159Google Scholar
  9. Chen C, Börnick H, Cai Q et al (2015) Challenges and opportunities of German-Chinese cooperation in water science and technology. Environ Earth Sci 73(8):4861–4871. doi:10.1007/s12665-015-4149-5 CrossRefGoogle Scholar
  10. Clapcott JE, Collier KJ, Death RG et al (2012) Quantifying relationships between land-use gradients and structural and functional indicators of stream ecological integrity. Freshw Biol 57(1):74–90. doi:10.1111/j.1365-2427.2011.02696.x CrossRefGoogle Scholar
  11. Clarke RT, Wright JF, Furse MT (2003) RIVPACS models for predicting the expected macroinvertebrate fauna and assessing the ecological quality of rivers. Ecol Model 160(3):219–233CrossRefGoogle Scholar
  12. Collier KJ, Clapcott JE, Hamer MP, Young RG (2013) Extent estimates and land cover relationships for functional indicators in non-wadeable rivers. Ecol Ind 34:53–59. doi:10.1016/j.ecolind.2013.04.010 CrossRefGoogle Scholar
  13. Death RG, Collier KJ (2010) Measuring stream macroinvertebrate responses to gradients of vegetation cover: when is enough enough? Freshw Biol 55(7):1447–1464. doi:10.1111/j.1365-2427.2009.02233.x CrossRefGoogle Scholar
  14. Death RG, Joy MK (2004) Invertebrate community structure in streams of the Manawatu–Wanganui region, New Zealand: the roles of catchment versus reach scale influences. Freshw Biol 49:982–997CrossRefGoogle Scholar
  15. Death RG, Zimmermann EM (2005) Interaction between disturbance and primary productivity in determining stream invertebrate diversity. Oikos 111(2):392–402. doi:10.1111/j.0030-1299.2005.13799.x CrossRefGoogle Scholar
  16. Dudgeon D (2006) The impacts of human disturbance on stream benthic invertebrates and their drift in North Sulawesi, Indonesia. Freshw Biol 51(9):1710–1729. doi:10.1111/j.1365-2427.2006.01596.x CrossRefGoogle Scholar
  17. Fuller RL, LaFave C, Anastasi M, Molina J, Salcedo H, Ward S (2008) The role of canopy cover on the recovery of periphyton and macroinvertebrate communities after a month-long flood. Hydrobiologia 598(1):47–57. doi:10.1007/s10750-007-9139-5 CrossRefGoogle Scholar
  18. Groll M, Opp C, Kulmatov R, Ikramova M, Normatov I (2015) Water quality, potential conflicts and solutions—an upstream–downstream analysis of the transnational Zarafshan River (Tajikistan, Uzbekistan). Environ Earth Sci 73(2):743–763. doi:10.1007/s12665-013-2988-5 CrossRefGoogle Scholar
  19. Harding JS, Benfield EF, Bolstad PV, Helfman GS, Jones EBD (1998) Stream biodiversity: the ghost of land use past. Proc Natl Acad Sci USA 95:14843–14847CrossRefGoogle Scholar
  20. Heino J (2009) Biodiversity of aquatic insects: spatial gradients and environmental correlates of assemblage-level measures at large scales. Freshw Rev 2:1–29. doi:10.1608/FRJ-2.1.1 CrossRefGoogle Scholar
  21. Heino J, Muotka T, Paavola R (2003) Determinants of macroinvertebrate diversity in headwater streams: regional and local influences. J Anim Ecol 72(3):425–434. doi:10.1046/j.1365-2656.2003.00711.x CrossRefGoogle Scholar
  22. Hering D, Moog O, Sandin L, Verdonschot PFM (2004) Overview and application of the AQEM assessment system. Hydrobiologia 516:1–20CrossRefGoogle Scholar
  23. Hering D, Johnson RK, Kramm S, Schmutz S, Szoszkiewicz K, Verdonschot PFM (2006) Assessment of European streams with diatoms, macrophytes, macroinvertebrates and fish: a comparative metric-based analysis of organism response to stress. Freshw Biol 51(9):1757–1785. doi:10.1111/j.1365-2427.2006.01610.x CrossRefGoogle Scholar
  24. Jähnig SC, Lorenz AW, Hering D (2009) Restoration effort, habitat mosaics, and macroinvertebrates—does channel form determine community composition? Aquat Conserv 19(2):157–169CrossRefGoogle Scholar
  25. Jiang WX, Jia XH, Zhou SC, Li FQ, Tang T, Cai QH (2009) Seasonal dynamics of macrozoobenthos community structure in Xiangxi River. Chin J Appl Ecol 20(4):923–928Google Scholar
  26. Jiang X-M, Xing J, Qiu J-W, Wu J-M, Wang J-W, Xie Z-C (2010) Structure of macroinvertebrate communities in relation to environmental variables in a subtropical Asian River system. Int Rev Hydrobiol 95(1):42–57CrossRefGoogle Scholar
  27. Jun Y-C, Won D-H, Lee S-H, Kong D-S, Hwang S-J (2012) A multimetric benthic macroinvertebrate index for the assessment of stream biotic integrity in Korea. Int J Environ Res Public Health 9:3599–3628CrossRefGoogle Scholar
  28. Kail J, Hering D (2009) The influence of adjacent stream reaches on the local ecological status of Central European mountain streams. River Res Appl 25(5):537–550CrossRefGoogle Scholar
  29. Kail J, Arle J, Jähnig SC (2012) Limiting factors and thresholds for macroinvertebrate assemblages in European rivers: empirical evidence from three datasets on water quality, catchment urbanization, and river restoration. Ecol Ind 18:63–72CrossRefGoogle Scholar
  30. Komori K, Suzuki Y, Minamiyama M, Harada A (2013) Occurrence of selected pharmaceuticals in river water in Japan and assessment of their environmental risk. Environ Monit Assess 185:4529–4536CrossRefGoogle Scholar
  31. Korte T (2010) Current and substrate preferences of benthic invertebrates in the rivers of the Hindu Kush-Himalayan region as indicators of hydromorphological degradation. Hydrobiologia 651(1):77–91. doi:10.1007/s10750-010-0291-y CrossRefGoogle Scholar
  32. Leibold MA, Holyoak M, Mouquet N et al (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7(7):601–613. doi:10.1111/j.1461-0248.2004.00608.x CrossRefGoogle Scholar
  33. Li F, Cai Q, Qu X et al (2012) Characterizing macroinvertebrate communities across China: large-scale implementation of a self-organizing map. Ecol Ind 23:394–401CrossRefGoogle Scholar
  34. Malaj E, von der Ohe PC, Grote M et al (2014) Organic chemicals jeopardize the health of freshwater ecosystems on the continental scale. Proc Natl Acad Sci USA 111(26):9549–9554. doi:10.1073/pnas.1321082111 CrossRefGoogle Scholar
  35. Meng W, Zhang N, Zhang Y, Zheng B (2009) Integrated assessment of river health based on water quality, aquatic life and physical habitat. J Environ Sci China 21(8):1017–1027CrossRefGoogle Scholar
  36. Moog O, Sharma S (2005) Guidance manual for pre-classifying the ecological status of Hindu Kush-Himalaya (HKH) rivers Deliverable 7b for Assess-HKH, European CommissionGoogle Scholar
  37. Morse JC, Lianfang Y, Lixin T (eds) (1994) Aquatic insects of China useful for monitoring water quality. Hohai University Press, NanjingGoogle Scholar
  38. Murray-Bligh JAD, Furse MT, Jones FH, Gunn RJM, Dines RA, Wright JF (1997) Procedure for collecting and analysing macroinvertebrate samples for RIVPACS. Joint publication by the Institute of Freshwater Ecology and the Environment AgencyGoogle Scholar
  39. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403(6772):853–858. http://www.nature.com/nature/journal/v403/n6772/suppinfo/403853a0_S1.html
  40. Nesemann H, Sharma S, Sharma G et al (eds) (2007) Aquatic invertebrates of the Ganga River system, vol 1. Kathmandu, NepalGoogle Scholar
  41. Neumann M, Dudgeon D (2002) The impact of agricultural runoff on stream benthos in Hong Kong, China. Water Res 36(12):3103–3109CrossRefGoogle Scholar
  42. Pavlin M, Birk S, Hering D, Urbanič G (2011) The role of land use, nutrients, and other stressors in shaping benthic invertebrate assemblages in Slovenian rivers. Hydrobiologia 678(1):137–153. doi:10.1007/s10750-011-0836-8 CrossRefGoogle Scholar
  43. Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87(10):2614–2625. doi:10.1890/0012-9658(2006)87[2614:VPOSDM]2.0.CO;2Google Scholar
  44. Poff NL (1997) Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. J N Am Benthol Soc 16:391–409CrossRefGoogle Scholar
  45. Qu X, Tang T, Xie Z, Ye L, Li D, Cai Q (2005) Distribution of the macroinvertebrate communities in the Xiangxi river system and relationships with environmental factors. J Freshw Ecol 20(2):233–238CrossRefGoogle Scholar
  46. Scott RW, Barton DR, Evans MS, Keating JJ (2011) Latitudinal gradients and local control of aquatic insect richness in a large river system in northern Canada. J N Am Benthol Soc 30(3):621–634. doi:10.1899/10-112.1 CrossRefGoogle Scholar
  47. Shah DN, Domisch S, Pauls SU, Haase P, Jähnig SC (2014) Current and future latitudinal gradients in stream macroinvertebrate richness across North America. Freshw Sci 33(4):1136–1147. doi:10.1086/678492 CrossRefGoogle Scholar
  48. Stendera S, Johnson RK (2006) Multiscale drivers of water chemistry of boreal lakes and streams. Environ Manag 38(5):760–770. doi:10.1007/s00267-005-0180-8 CrossRefGoogle Scholar
  49. Sundermann A, Gerhardt M, Kappes H, Haase P (2013) Stressor prioritisation in riverine ecosystems: which environmental factors shape benthic invertebrate assemblage metrics? Ecol Ind 27:83–96. doi:10.1016/j.ecolind.2012.12.003 CrossRefGoogle Scholar
  50. Tachamo Shah RD, Shah DN (2012) Performance of different biotic indices assessing the ecological status of rivers in the Central Himalaya. Ecol Ind 23:447–452. doi:10.1016/j.ecolind.2012.04.001 CrossRefGoogle Scholar
  51. Tachamo Shah RD, Sharma S, Haase P, Jähnig SC, Pauls SU (2015) The climate sensitive zone along an altitudinal gradient in central Himalayan rivers: a useful concept to monitor climate change impacts in mountain regions. Clim Change. doi:10.1007/s10584-015-1417-z
  52. Tang T, Cai Q, Liu J (2006) Using epilithic diatom communities to assess ecological condition of Xiangxi River system. Environ Monit Assess 112(1):347–361CrossRefGoogle Scholar
  53. ter Braak CJF, Smilauer P (2003) Canoco for windows 4.51 edn. Biometrics—Plant Research International, WageningenGoogle Scholar
  54. Tonkin JD (2014) Drivers of macroinvertebrate community structure in unmodified streams. PeerJ:e465 doi:10.7717/peerj.465
  55. Tonkin JD, Death RG (2012) Consistent effects of productivity and disturbance on diversity between landscapes. Ecosphere 3:art108Google Scholar
  56. Tonkin JD, Shah DN, Kuemmerlen M et al (2015) Climatic and catchment-scale predictors of Chinese stream insect richness differ with order. PlosONE 10(4):e0123250. doi:10.1371/journal.pone.0123250 CrossRefGoogle Scholar
  57. Vinson MR, Hawkins CP (1998) Biodiversity of stream insects: variation at local, basin, and regional scales. Annu Rev Entomol 43(1):271–293. doi:10.1146/annurev.ento.43.1.271 CrossRefGoogle Scholar
  58. Vinson MR, Hawkins CP (2003) Broad-scale geographical patterns in local stream insect genera richness. Ecography 26(6):751–767CrossRefGoogle Scholar
  59. Wan Y, Xu L, Hu J et al (2014) The Role of Environmental and Spatial Processes in Structuring Stream Macroinvertebrates Communities in a Large River Basin. CLEAN – Soil, Air, Water:n/a-n/a doi:10.1002/clen.201300861
  60. Wang J, Soininen J, Zhang Y, Wang B, Yang X, Shen J (2011) Contrasting patterns in elevational diversity between microorganisms and macroorganisms. J Biogeogr 38(3):595–603. doi:10.1111/j.1365-2699.2010.02423.x CrossRefGoogle Scholar
  61. Wang J, Soininen J, Zhang Y, Wang B, Yang X, Shen J (2012) Patterns of elevational beta diversity in micro- and macroorganisms. Glob Ecol Biogeogr 21(7):743–750. doi:10.1111/j.1466-8238.2011.00718.x CrossRefGoogle Scholar
  62. Wang Y, Teng E, Liu T et al (2014) A national pilot scheme for monitoring and assessment of ecological integrity of surface waters in China. Environ Dev. doi:10.1016/j.envdev.2014.02.003 Google Scholar
  63. Wu N, Tang T, Zhou S et al (2007) Influence of cascaded exploitation of small hydropower on phytoplankton in Xiangxi River. J Appl Ecol 18(5):1091–1096Google Scholar
  64. Ye Y, He XY, Chen W, Yao J, Yu S, Jia L (2014) Seasonal water quality upstream of Dahuofang Reservoir, China: the effects of land use type at various spatial scales. Clean 42(10):1423–1432. doi:10.1002/clen.201300600 Google Scholar
  65. Yuan LL, Norton SB (2003) Comparing responses of macroinvertebrate metrics to increasing stress. J N Am Benthol Soc 22(2):308–322. doi:10.2307/1468000 CrossRefGoogle Scholar
  66. Zhang FL, Liu JL, Yang ZF, Li YL (2008) Ecosystem health assessment of urban rivers and lakes—case study of “the six lakes” in Beijing, China. Front Environ Sci Eng China 2(2):209–217CrossRefGoogle Scholar
  67. Zhang Y, Dudgeon D, Cheng D et al (2010) Impacts of land use and water quality on macroinvertebrate communities in the Pearl River drainage basin, China. Hydrobiologia 652(1):71–88CrossRefGoogle Scholar
  68. Zhao YW, Yang ZF (2009) Integrative fuzzy hierarchical model for river health assessment: a case study of Yong River in Ningbo City, China. Commun Nonlinear Sci Numer Simul 14(4):1729–1736CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Sonja C. Jähnig
    • 1
  • Deep Narayan Shah
    • 2
    • 3
  • Ram Devi Tachamo Shah
    • 2
    • 3
  • Fengqing Li
    • 2
    • 3
  • Qinghua Cai
    • 4
  • Andrea Sundermann
    • 3
  • Jonathan D. Tonkin
    • 2
    • 3
  • Sonja Stendera
    • 5
    • 6
  1. 1.Department of Ecosystem ResearchLeibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB)BerlinGermany
  2. 2. Senckenberg Biodiversity and Climate Research Centre (BiK-F)FrankfurtGermany
  3. 3.Department of River Ecology and ConservationSenckenberg Research Institute and Natural History Museum FrankfurtGelnhausenGermany
  4. 4.State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of HydrobiologyChinese Academy of SciencesWuhanPeople’s Republic of China
  5. 5.Department of Applied Zoology/HydrobiologyUniversity of Duisburg-EssenEssenGermany
  6. 6.Statkraft Markets GmbHDüsseldorfGermany

Personalised recommendations