Advertisement

Environmental Earth Sciences

, Volume 74, Issue 4, pp 3589–3601 | Cite as

A single-site reactive transport model of Cs+ for the in situ diffusion and retention (DR) experiment

  • Shuping Yi
  • Javier SamperEmail author
  • Acacia Naves
  • Josep M. Soler
Original Article

Abstract

In situ diffusion experiments are performed in underground research laboratories for understanding and quantifying radionuclide diffusion from underground radioactive waste repositories. The in situ diffusion and retention, DR, experiment was performed at the Mont Terri underground research laboratory, Switzerland, to characterize the diffusion and retention parameters of the Opalinus clay. Several tracers were injected instantaneously in the circulating artificial water and were then allowed to diffuse into the clay rock through two porous packed-off sections of a borehole drilled normal to the bedding of the clay formation. This paper presents a single-site multicomponent reactive transport model of Cs+, a tracer used in the DR experiment which sorbs onto Opalinus clay via cation exchange. The reactive transport model accounts for the diffusive-reactive transport of 11 primary species and 22 aqueous complexes, and the water–rock interactions for 5 cation exchange and 3 mineral dissolution/precipitation reactions. Most of the solutes except for Cs+ diffuse from the Opalinus clay formation into the injection interval because the concentrations in the initial Opalinus clay pore water are larger than those of the initial water in the circulation system. Calcite dissolves near the borehole while dolomite precipitates. Dissolved Cs+ sorbs by exchanging with Ca2+ in the exchange complex. The computed dilution curve of Cs+ in the circulating fluid is most sensitive to the effective diffusion, D e, of the filter, the selectivity coefficient of Na+ to Cs+, K Na–Cs and D e of the borehole disturbed zone. The apparent distribution coefficient of Cs+, \(K_{\text{d}}^{\text{a}}\), in the formation varies in space and time from 100 to 165 L/kg due to the temporal changes in the water chemistry in the formation. The results of a sensitivity run in which the initial chemical composition of the Opalinus pore water is the same as the initial chemical composition of the water in the circulation system show that the changes in \(K_{\text{d}}^{\text{a}}\) are negligible. The dilution curve of Cs+ computed with the reactive transport model coincides with that obtained with the K d model. The tracer concentrations along the overcoring profiles computed with the K d model, however, differ significantly from those computed with the reactive transport model. Therefore, a reactive transport model is needed for the appropriate interpretation of the Cs+ overcoring data from the DR diffusion experiment.

Keywords

Radionuclide diffusion Reactive transport model Cation exchange Cs+ In situ diffusion and retention test Opalinus clay Switzerland 

Notes

Acknowledgments

This work was supported by ENRESA, the European Union through the FUNMIG (FUNdamental Processes of radionuclide MIGration) Project (FP6-516514), the Mont Terri Consortium and a research scholarship awarded to the third author. Funding for the latest stages of the work was provided by the Spanish Ministry of Economy and Competitiveness (Project CGL2012-36560), and Fund 2012/181 from “Consolidación e estruturación de unidades de investigación competitivas”, “Grupos de referencia competitiva”) of Xunta de Galicia. Partial funding has been obtained from the National Natural Science Foundation of China through 41202163 and the Guangdong Natural Science Foundation through S2011040005245. Thanks are given to Olivier Leupin from NAGRA and Thomas Gimmi from PSI and the University of Bern for productive discussions on the DR experiments. We thank the four anonymous reviewers for their constructive and thoughtful comments and suggestions, which have contributed to improve the paper.

References

  1. Appelo CAJ, Postma D (1993) Geochemistry, groundwater and pollution. Balkema, Rotterdam, pp 536Google Scholar
  2. Appelo CAJ, Van Loon LR, Wersin P (2010) Multicomponent diffusion of a suite of tracers (HTO, Cl, Br, I, Na, Sr, Cs) in a single simple of Opalinus Clay. Geochim Cosmochim Acta 74:1201–1219CrossRefGoogle Scholar
  3. Atun G, Bodur N (2002) Retention of Cs on zeolite, bentonite and their mixtures. J Radioanal Nucl Chem 253(2):275–279CrossRefGoogle Scholar
  4. Atun G, Kilislioglu A (2003) Adsorption behavior of cesium on montmorillonite-type clay in the presence of potassium ions. J Radioanal Nucl Chem 258(3):605–611CrossRefGoogle Scholar
  5. Bradbury MH, Baeyens B (2000) A generalised sorption model for the concentration dependent uptake of caesium by argillaceous rocks. J Contam Hydrol 42:141–163CrossRefGoogle Scholar
  6. Dai Z, Samper J (2006) Inverse modeling of water flow and multicomponent reactive transport in coastal aquifer systems. J Hydrol 327:447–461CrossRefGoogle Scholar
  7. Dai Z, Samper J, Ritzi R (2006) Identifying geochemical processes by inverse modeling of multicomponent reactive transport in Aquia aquifer. Geosphere 4:210–219CrossRefGoogle Scholar
  8. Dai Z, Wolfsberg A, Lu Z, Deng H (2009) Scale dependence of sorption coefficients for contaminant transport in saturated fractured rock. Geophys Res Lett 36:L01403. doi: 10.1029/2008GL036516 CrossRefGoogle Scholar
  9. Dai Z, Wolfsberg A, Reimus P, Deng H, Kwicklis E, Ding M, Ware D, Ye M (2012) Identification of sorption processes and parameters for radionuclide transport in fractured rock. J Hydrol 414–415:516–526Google Scholar
  10. Dewonck S (2007) Expérimentation DIR. Synthese des résultats obtenus au 01/03/07. Laboratoire de recherche souterrain de Meuse/Haute-Marne. ANDRA report D.RP.ALS.07-0044Google Scholar
  11. Gaines LG, Thomas CH (1953) Adsorption studies on clay minerals. II. A formulation of the thermodynamics of exchange adsorption. J Chem Phys 21:714–718CrossRefGoogle Scholar
  12. García-Gutiérrez M, Missana T, Mingarro M, Samper J, Dai Z, Molinero J (2001) Solute transport properties of compacted Ca-bentonite used in FEBEX Project. J Contam Hydrol 47(3):127–137CrossRefGoogle Scholar
  13. Gimmi T (2006) DR experiment Mont Terri: compilation of input data for calculations. Technical note of the DR project. Mont Terri Project, SwitzerlandGoogle Scholar
  14. Gimmi T, Leupin O, Eikenberg J, Glaus M, Van Loon LR, Waber N, Wersin P, Wang H, Grolimund D, Borca CN, Dewonck S, Wittebrood C (2014) Anisotropic diffusion at the field scale in a 4-year multi-tracer diffusion and retention experiment—I: insights from the experimental data. Geochim Cosmochim Acta 125(2014):373–393. doi: 10.1016/j.gca.2013.10.014 CrossRefGoogle Scholar
  15. Gutiérrez M, Fuentes HR (1996) A mechanistic modeling of montmorillonite contamination by cesium sorption. Appl Clay Sci 11:11–24CrossRefGoogle Scholar
  16. Jakob A, Pfingstein W, Van Loon L (2009) Effects of sorption competition on caesium diffusion through compacted argillaceous rock. Geochim Cosmochim Acta 73:2441–2456CrossRefGoogle Scholar
  17. Jan YL, Tsai SC, Jan JC, Hsu CN (2006) Additivity of the distribution ratio of Cs and Se on bentonite/quartz sand mixture in seawater. J Radioanal Nucl Chem 267(1):225–231CrossRefGoogle Scholar
  18. Khan SA (2003) Sorption of the long-lived radionuclides cesium-134, strotium-85 and cobalt-60 on bentonite. J Radioanal Nucl Chem 258(1):3–6CrossRefGoogle Scholar
  19. Klika Z, Kraus L, Vopalka D (2007) Cesium uptake from aqueous solutions by bentonite: a comparison of multicomponent sorption with ion-exchange models. Langmuir 23:1227–1233CrossRefGoogle Scholar
  20. Lauber M, Baeyens B, Bradbury MH (2000) Physico-chemical characterization and sorption measurements of Cs, Sr, ni, Eu, Th, Sn and Se on Opalinus Clay from Mont Terri. PSI technical report 00-10. Also in: Nagra tecnnical report NTB 00-11Google Scholar
  21. Lu C, Samper J, Fritz B, Clement A, Montenegro L (2011) Interactions of corrosion products and bentonite: an extended multicomponent reactive transport model. Phys Chem Earth Parts A/B/C 36:1661–1668. doi: 10.1016/j.pce.2011.07.013 CrossRefGoogle Scholar
  22. Molinero J, Samper J (2006) Modeling of reactive solute transport in fracture zones of granitic bedrocks. J Contam Hydrol 82:293–318CrossRefGoogle Scholar
  23. Molinero J, Samper J, Yang C, Zhang G (2004) Biogeochemical reactive transport model of the Redox zone experiment of the Äspö hard rock laboratory (Sweden). Nucl Technol 48(2):151–165Google Scholar
  24. Montavon G, Alhajji E, Grambow B (2006) Study of the interaction of Ni2+ and Cs+ on MX-80 bentonite: effect of compaction using the “Capillary method”. Environ Sci Technol 40:4672–4679CrossRefGoogle Scholar
  25. Murali MS, Mathur JN (2002) Sorption characteristics of Am(III), Sr(II) and Cs(I) on bentonite and granite. J Radioanal Nucl Chem 254(1):129–136CrossRefGoogle Scholar
  26. Naves A, Samper J, Gimmi T (2012) Identifiability of diffusion and sorption parameters from in situ diffusion experiments by using simultaneously tracer dilution and claystone data. J Contam Hydrol 142–143(2012):63–74. doi: 10.1016/j.jconhyd.2012.09.005 CrossRefGoogle Scholar
  27. Palut JM, Montarnal P, Gautschi A, Tevissen E, Mouche E (2003) Characterisation of HTO diffusion properties by an in situ tracer experiment in Opalinus Clay at Mont Terri. J Contam Hydrol 61(1):203–218CrossRefGoogle Scholar
  28. Pearson FJ, Arcos D, Boisson J-Y, Fernandes AM, Gabler H-E, Gaucher É, Gautschi A, Griffault L, Hernan P, Waber HN (2003) geochemistry of water in the opalinus clay formation at the Mont Terri rock laboratory. In: Federal Office for Water and Geology. Geology Series, vol 5. Bern, SwitzerlandGoogle Scholar
  29. Samper J, Yang C (2006) Stochastic analysis of transport and multicomponent competitive monovalent cation exchange in aquifers. Geosphere 2:102–112CrossRefGoogle Scholar
  30. Samper J, Yang C, Naves A, Yllera A, Hernández A, Molinero J, Soler JM, Hernán P, Mayor JC, Astudillo J (2006a) A fully 3-D anisotropic model of DI-B in situ diffusion experiment in the Opalinus Clay formation. Phys Chem Earth 31:531–540CrossRefGoogle Scholar
  31. Samper J, Dai Z, Molinero J, García-Gutiérrez M, Missana T, Mingarro M (2006b) Interpretation of solute transport experiments in compacted Ca-bentonites using inverse modelling. Phys Chem Earth 31:640–648CrossRefGoogle Scholar
  32. Samper J, Dewonck S, Zheng L, Yang Q, Naves A (2008a) Normalized sensitivities and parameter identifiability of in situ diffusion experiments on Callovo-Oxfordian clay at Bure site. Phys Chem Earth 33:1000–1008CrossRefGoogle Scholar
  33. Samper J, Lu C, Montenegro L (2008b) Coupled hydrogeochemical calculations of the interactions of corrosion products and bentonite. Phys Chem Earth 33(Supplement 1):S306–S316CrossRefGoogle Scholar
  34. Samper J, Xu T, Yang C (2009) A sequential partly iterative approach for multicomponent reactive transport with CORE2D. Comput Geosci. doi: 10.1007/s10596-008-9119-5 Google Scholar
  35. Samper J, Yi S, Naves A (2010a) Analysis of the parameter identifiability of the in situ diffusion and retention (DR) experiment. Phys Chem Earth 35:207–216CrossRefGoogle Scholar
  36. Samper J, Lu C, Cormenzana JL, Ma H, Montenegro L, Cuñado MA (2010b) Testing K d models of Cs+ in the near field of a HLW repository in granite with a reactive transport model. Phys Chem Earth 35:278–283. doi: 10.1016/j.pce.2010.04.002 CrossRefGoogle Scholar
  37. Samper J, Yang C, Zheng L, Montenegro L, Xu T, Dai Z, Zhang G, Lu C, Moreira S (2011) CORE2D V4: a code for water flow, heat and solute transport, geochemical reactions, and microbial processes. In: Zhang F, Yeh G-T, Parker C, Shi X (Eds) Chapter 7 of the Electronic book groundwater reactive transport models. Bentham Science Publishers, Sharjah, pp 161–186Google Scholar
  38. Shahwan T, Erten HN (2002) Thermodynamic parameters of Cs+ sorption on natural clays. J Radioanal Nucl Chem 253(1):115–120CrossRefGoogle Scholar
  39. Soler JM, Samper J, Yllera A, Hernández A, Quejido A, Fernández M, Yang C, Naves A, Hernán P, Wersin P (2008) The DI-B in situ diffusion experiment at mont terri: results and modelling. Phys Chem Earth 33(Supplement 1):S196–S207CrossRefGoogle Scholar
  40. Soler JM, Wersin P, Leupin OX (2013) Modeling of Cs+ diffusion and retention in the DI-A2 experiment (Mont Terri). Uncertainties in sorption and diffusion parameters. Appl Geochem 33(2013):191–198CrossRefGoogle Scholar
  41. Tertre E, Berger G, Castel S, Loubet M, Giffaut E (2005) Experimental sorption of Ni2+, Cs+ and Ln3+ onto a montmorillonite up to 150 °C. Geochim Cosmochim Acta 69(21):4937–4948CrossRefGoogle Scholar
  42. Tevissen E, Soler JM, Montarnal P, Gautschi A, van Loon LR (2004) Comparison between in situ and laboratory diffusion studies of HTO and halides in Opalinus Clay from the Mont Terri. Radiochim Acta 92:781–786CrossRefGoogle Scholar
  43. Tsai SC, Ouyang S, Hsu CN (2001) Sorption and diffusion behaviour of Cs and Sr on Jih-Hsing bentonite. Appl Radiat Isot 54:209–215CrossRefGoogle Scholar
  44. Van Loon LR, Glaus MA (2008) Effective diffusion coefficient of several tracers in Teflon filters. PSI Technical note, SwitzerlandGoogle Scholar
  45. Van Loon LR, Wersin P, Soler JM, Eikenberg J, Gimmi T, Hernán P, Dewonck S, Savoye S (2004) In-Situ Diffusion of HTO, 22Na+, Cs+ and I in Opalinus Clay at the Mont Terri underground rock laboratory. Radiochim Acta 92:757–763CrossRefGoogle Scholar
  46. Van Loon LR, Baeyens B, Bradbury MH (2009) The sorption behaviour of caesium on Opalinus clay: a comparison between intact and crushed material. Appl Geochem. doi: 10.1016/j.apgeochem.2009.03.003 Google Scholar
  47. Wersin P, Van Loon LR, Soler J, Yllera A, Eikenberg J, Gimmi T, Hernan P, Boisson J-Y (2004) Long-term diffusion experiment at Mont Terri: first Results from field and laboratory data. Appl Clay Sci 26:123–135CrossRefGoogle Scholar
  48. Wersin P, Soler JM, Van Loon L, Eikenberg J, Baeyens B, Grolimund D, Gimmi T, Dewonck S (2008) Diffusion of HTO, Br, I, Cs+, 85Sr2+ and 60Co2+ in a clay formation: results and modelling from an in situ experiment in Opalinus clay. Appl Geochem 23(4):678–691CrossRefGoogle Scholar
  49. Wolery TJ (1992) EQ3/6, a software package for geochemical modeling of aqueous systems: package overview and installation guide. In: Lawrence livermore national laboratory. Livermore, California. Version: thermo.com.8, pp 230Google Scholar
  50. Xu T, Samper J, Ayora C, Mazano M, Custodio E (1999) Modeling of nonisothermal multi-component reactive transport in field-scale porous media flow system. J Hydrol 214:144–164CrossRefGoogle Scholar
  51. Yang C, Samper J, Molinero J, Bonilla M (2007) Modelling geochemical and microbial consumption of dissolved oxygen after backfilling a high level radioactive waste repository. J Cont Hydrol 93:130–148CrossRefGoogle Scholar
  52. Yang C, Samper J, Montenegro L (2008) A coupled non-isothermal reactive transport model for long-term geochemical evolution of a HLW repository in clay. Environ Geol 53:1627–1638. doi: 10.1007/s00254-007-0770-2 CrossRefGoogle Scholar
  53. Yeh GT (2000) Computational subsurface hydrology reactions, transport, and fate of chemicals and microbes. Kluwer, DordrechtCrossRefGoogle Scholar
  54. Yi S, Samper J, Naves A, Soler JM (2012) Inverse estimation of the effective diffusion of the filter in the in situ diffusion and retention (dr) experiment. Transp Porous Media. doi: 10.1007/s11242-012-9960-9 Google Scholar
  55. Yllera A, Hernández A, Mingarro M, Quejido A, Sedano LA, Soler JM, Samper J, Molinero J, Barcala JM, Martín PL, Fernández M, Wersin P, Rivas P, Hernán P (2004) DI-B experiment: planning, design and performance of an in situ diffusion experiment in the opalinus clay formation. Appl Clay Sci 26:181–196CrossRefGoogle Scholar
  56. Zhang G, Samper J, Montenegro L (2008) Coupled thermo-hydro-bio-geochemical reactive transport model of the CERBERUS heating and radiation experiment in Boom clay. Appl Geochem 23(4):932–949CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Shuping Yi
    • 1
    • 2
  • Javier Samper
    • 2
    Email author
  • Acacia Naves
    • 2
  • Josep M. Soler
    • 3
  1. 1.Electric Power Design Institute, China Energy Engineering Group Co., Ltd.GuangzhouChina
  2. 2.Escuela de Ingenieros de Caminos. Universidad de A CoruñaA CoruñaSpain
  3. 3.IDAEA-CSICBarcelonaSpain

Personalised recommendations