Advertisement

Environmental Earth Sciences

, Volume 74, Issue 4, pp 3287–3300 | Cite as

Mineralogical, hydrogeochemical and isotopic characteristics of the Žveplenica sulphide karstic spring (Trebuša Valley, NW Slovenia)

  • Mojca Zega
  • Boštjan Rožič
  • Martin Gaberšek
  • Tjaša Kanduč
  • Petra Žvab Rožič
  • Timotej Verbovšek
Original Article
  • 158 Downloads

Abstract

Sulphide springs in Slovenia are very rare and they form a peculiar feature in a carbonate setting. The basic geological, hydrogeochemical and isotopic characteristics of the Žveplenica sulphide dolomite spring (Trebuša Valley, NW Slovenia) were investigated, along with the geochemical and mineralogical characteristics of the sediment deposited at the spring location. Geological mapping defined a small, structurally and lithologically isolated dolomitic aquifer. The major groundwater geochemical composition is HCO3  > Mg2+ > Ca2+, indicating dissolution of dolomite. The concentration of SO4 2− was very low. The groundwater was generally close to saturation with respect to calcite and dolomite. Geochemical modelling and other analyses indicated sulphur to originate not from gypsum and/or anhydrite, but from some other sources. We suggest the origin of sulphur be the dissolution of volcanogenic sulphidic enrichment in a highly variable, Ladinian clastic-limestone-volcanic rock association, forming the basis of early Carnian Cordevolian dolomite, from which the spring discharges. The measured δ13CDIC value of −11.9 ‰ indicates groundwater with a contribution of degraded organic matter and dissolved inorganic carbon in the aquifer. The isotopic composition of oxygen (δ18OH2O), hydrogen (δDH2O) and tritium was −8.1 ‰, δD −51.4 ‰ and 3H 3.64 TU, respectively. The δ18O and δD values indicated recharge from precipitation with H2S exsolution, while the 3H activity shows groundwater older than 40 years. Mineralogical and geochemical analysis of sediment showed a typical carbonate (mostly dolomite) composition, which was in agreement with the geochemical and isotopic composition of the groundwater of the spring, indicating a deep sourced inorganic form of sulphur such as pyrite.

Keywords

Sulphide spring Karst groundwater Hydrogeochemistry Stable isotopes Slovenia 

Notes

Acknowledgments

The authors are grateful to Mr. Stojan Žigon for technical support, to the Programme research group “Cycling of nutrients and contaminants in the environment, mass balances and modelling environmental processes and risk analysis” (P1-0143), and to the Slovenian Research Agency for financial support of projects Z1-3670 entitled “Hydrogeochemistry and evolution of groundwaters in karstic and fractured aquifers” and “Comparative study of ecosystem management and services in contrasting Slovenian freshwater system” L2-6778. The authors would also like to thank the Municipality of Tolmin for its financial contribution to the project and to the Tolmin Angling Club for providing us with appropriate equipment. Sincere thanks go to Dr. Anthony R. Byrne for linguistic corrections.

References

  1. Atekwana EA, Krishnamurthy RV (1998) Seasonal variations of dissolved inorganic carbon and δ13C of surface waters: application of a modified gas evaluation technique. J Hydrol 205:260–278Google Scholar
  2. Aucour AM, Sheppard SMF, Guyomar OJ, Wattelet J (1999) Use of 13C to trace origin and cycling of inorganic carbon in the Rhône river system. Chemical Geology 159:87–105CrossRefGoogle Scholar
  3. Buser S (1987) Basic geological map 1:100 000, sheet Tolmin (Osnovna geološka karta SFRJ 1:100 000, list Tolmin). Zvezni geološki zavod, BeogradGoogle Scholar
  4. Buser S (1989) Development of the Dinaric and Julian carbonate platforms and the intermediate Slovenian basin (NW-Yugoslavia). In: Carulli GB, Cucchi F, Radrizzani CP (eds) Evolution of the Karstic carbonate platform: relation with other periadriatic carbonate platforms. Bolletino della Societa Geologica, Italiana 40:313–320Google Scholar
  5. Buser S, Komac M, Bavec M, Celarc B, Jež J, Lapanje A, Novak M, Ogorelec B, Trajanova M (2010) Geological map of Slovenia 1:250,000 (Geološka karta Slovenije 1:250,000). Geološki zavod, LjubljanaGoogle Scholar
  6. Čadež F (1977) Gypsum and anhydrite occurences in Idrija region (Sadra in anhidrit na Idrijskem). Geologija 20:289–301Google Scholar
  7. Čar J (1990) Angular tectonic-erosional unconformity in the deposits part of the Idrija Middle Triassic tectonic structure (Kotna tektonsko–erozijska diskordanca v rudiščnem delu srednjetriasne tektonske zgradbe). Geologija 31(32):267–284Google Scholar
  8. Čar J (2010) Geological Structure of the Idrija—Cerkno hills: explanatory book to the Geological map of the Idrija—Cerkljansko hills between Stopnik and Rovte 1:25,000 Geološki zavod Slovenije, Ljubljana (Geološka zgradba idrijsko–cerkljanskega hribovja; tolmač h Geološki karti idrijsko–cerkljanskega hribovja med Stopnikom in Rovtami 1:25,000)Google Scholar
  9. Čar J (2013) Ladinian skonca beds of the Idrija Ore Deposit (W Slovenia) [Ladinijske plasti skonca idrijskega rudišča (Z Slovenija)]. Geologija 56:151–174. doi: 10.5474/geologija.2013.010 CrossRefGoogle Scholar
  10. Cartwright I (2010) Using groundwater geochemistry and environmental isotopes to assess the correction of 14C ages in a silicate-dominated aquifer system. J Hydrol 382:174–187CrossRefGoogle Scholar
  11. Cartwright I, Weaver TR, Cendon DI, Fifield LK, Tweed SO, Petrides B, Swane I (2012) Constraining groundwater flow, residence time, inter-aquifer mixing, and aquifer properties using environmental isotopes in the southeast Murray Basin, Australia. Appl Geochem 27:1698–1709CrossRefGoogle Scholar
  12. Chapman D, Kimstach V (1998) Selection of Water Quality Variables. In: Chapman D (ed) Water Quality Assessments; A guide to the use of biota, sediments and water in environmental monitoring, 2nd edn. E & FN SPON, London and New York, pp 74–133Google Scholar
  13. Cigale M (1978) Carnian beds in the Idrija region (Karnijske plasti v okolici Idrije). Geologija 21:61–75Google Scholar
  14. Clark I, Fritz P (1997) Environmental isotopes in hydrology. Lewis Publishers, New YorkGoogle Scholar
  15. Craig H (1961) Isotopic variation in meteoric waters. Science 133:1702–1703. doi: 10.1126/science.133.3465.1702 CrossRefGoogle Scholar
  16. Currell MJ, Cartwright I, Bradley DC, Han D (2010) Recharge history and controls on groundwater quality in the Yuncheng Basin, north China. J Hydrol 385:216–229CrossRefGoogle Scholar
  17. Decree of declaration of cultural and historic protected sites and natural phenomena on the territory of Tolmin Municipality (1990) Official Bulletin No. 5/90 (Odlok o razglasitvi kulturnih in zgodovinskih spomenikov ter naravnih znamenitosti na območju občine Tolmin. Uradno glasilo št. 5/90)Google Scholar
  18. Dogramaci SS, Herzceg AL (2002) Strontium and carbon isotope constraints on carbonate-solution interactions and inter-aquifer mixing in groundwaters of the semi-arid Murray Basin, Australia. J Hydrol 262:50–67CrossRefGoogle Scholar
  19. Edmunds WM (2009) Geochemistry’s vital contribution to solving water resource problems. Appl Geochem 24:1058–1073CrossRefGoogle Scholar
  20. Gonfiantini R (1986) Environmental isotopes in lake studies. Elsevier, AmsterdamCrossRefGoogle Scholar
  21. Herzeg AI, Leaney FWJ, Stadler MF, Allan GI, Fifield LK (1997) Chemical and isotopic indicators of point-source recharge to a karst aquifer, South Australia. J Hydrol 192:271–299CrossRefGoogle Scholar
  22. Institute of the Republic of Slovenia for Nature Conservation (1983) The evaluation of natural and cultural heritage within the impact area of planned Trebuša hydropower station. Detailed Expert report (Zavod za spomeniško varstvo (1983) Ovrednotenje naravne in kulturne dediščine na območju zbiralnega jezera in ožjem vplivnem področju predvidene HE Trebuša. Elaborat)Google Scholar
  23. Janež J, Albreht A et al (1989) Hydrogeological research of area between Trnovo and Čepovanski dol, 1st phase. Investigations of water sources of Gorenja Trebuša, 1st phase. Common report. Rudnik živega srebra Idrija, Idrija (Hidrogeološke raziskave ozemlja med Trnovim in Čepovanskim dolom, I. faza. Raziskave vodnih virov Gorenje Trebuše, I. faza, Skupno poročilo)Google Scholar
  24. Kanduč T, Ogrinc N (2007) Hydrogeochemical characteristics of the Sava watershed in Slovenia. Geologija 50:157–177CrossRefGoogle Scholar
  25. Kanduč T, Kocman D, Ogrinc N (2008) Hydrogeochemical and stable isotope characteristics of the river Idrijca (Slovenia), the boundary watershed between the Adriatic and Black seas. Aquat Geochem 14:239–262. doi: 10.1007/s10498-008-9035-2 CrossRefGoogle Scholar
  26. Kanduč T, Mori N, Kocman D, Stibilj V, Grassa F (2012a) Hydrogeochemistry of Alpine springs from North Slovenia: insights from stable isotopes. Chemical geology 300–301:40–54CrossRefGoogle Scholar
  27. Kanduč T, Burnik Šturm M, Žigon S, McIntosh J (2012b) Tracing biogeochemical processes and pollution sources with stable isotopes in river system. Biogeosci Discuss 9(7):9711–9757CrossRefGoogle Scholar
  28. Lavrič JV, Spangenberg JE (2003) Stable isotope (C, O, S) systematics of the mercury mineralization at Idrija, Slovenia: constraints on fluid source and alteration processes. Miner Deposita 38:886–899. doi: 10.1007/s00126-003-0377-9 CrossRefGoogle Scholar
  29. Mayrhofer C, Niessner R, Baumann T (2014) Hydrochemistry and hydrogen sulfide generating processes in the Malm aquifer, Bavarian Molasse Basin, Germany. Hydrogeol J 22:151–162. doi: 10.1007/s10040-013-1064-2 CrossRefGoogle Scholar
  30. Mulec J, Summers EA (2011) Diversity of microeukaryotes along environmental gradients in sulphidic karstic springs (Žveplenica–Dolenja Trebuša, Slovenia). In: 4th congress of European microbiologists, FEMS 2011, GenevaGoogle Scholar
  31. Mulec J, Engel AS, Oarga A, Rossmassler K, Campbell BJ, Šebela S (2009) Microbial diversity from the sulfidic karstic spring, Žveplenica-Dolenja Trebuša, Slovenia. In: White WB (ed) ICS 15th international congress of speleology, proceedings, vol 1, Symposia part 1, KerrvilleGoogle Scholar
  32. Mulec J, Oarga A, Schiller E, Persoju A, Holko L, Šebela S (2014) Assessment of the physical environment of epigean invertebrates in a unique habitat: the case of a karst sulphidic spring, Slovenia. Ecohydrology doi: 10.1002/eco.1585
  33. Oarga A, Schiller E, Perşoiu A, Šebela S, Mulec J (2010) Contribution to the ecology of Copepoda in sulphidic karstic springs (Žveplenica–Dolenja Trebuša, Slovenia). In: Moškrič A, Trontelj P (eds) 20th international conference on subterranean biology, abstract book. Postojna, pp 138–139Google Scholar
  34. Ogorelec B, Rothe P (1993) Mikrofazies, Diagenese und Geochemie des Dachsteinkalkes und Hauptdolomits in Süd—West Slowenien. Geologija 35:81–182CrossRefGoogle Scholar
  35. Pavc O (2011) Hydrogeological report of groundwater research on parcel 672/4, k.o. 2261, Gorenja Trebuša, Tolmin municipality (Hidrogeološko poročilo o raziskavi podzemne vode na parceli 672/4, k.o. 2261, Gorenja Trebuša, občina Tolmin)Google Scholar
  36. Pearson FJ, Rightmire CT (1980) Sulphur and oxygen isotopes in aqueous sulphur compounds. In: Fritz P, Fontes JC (eds) Handbook of environmental isotope geochemistry. vol 1. Elsevier, Amsterdam, pp 227–259Google Scholar
  37. Placer L (1981) Geologic structure of southwestern Slovenia (Geološka zgradba jugozahodne Slovenije). Geologija 24:27–60Google Scholar
  38. Placer L (1982) Structural history of the Idrija mercury deposit (Tektonski razvoj idrijskega rudišča). Geologija 25:7–94Google Scholar
  39. Placer L (2008) Principles of the tectonic subdivision of Slovenia. Geologija 51:205–217. doi: 10.5474/geologija.2008.021 CrossRefGoogle Scholar
  40. Pu J, Yuan D, Zhang C, Zhao H (2013) Hydrogeochemistry and possible sulphate sources in karst groundwater in Chongqing, China. Environ Earth Sci 68:159–168CrossRefGoogle Scholar
  41. Šmuc A, Čar J (2002) Upper Ladinian to Lower Carnian sedimentary evolution in the Idrija-Cerkno region, Western Slovenia. Facies 46:205–216CrossRefGoogle Scholar
  42. Štambuk-Giljanović N (2008) Characteristics and origin of the hydrogen sulphide spring water from the Split spa (Southern Croatia). Environ Monit Assess 140:109–117CrossRefGoogle Scholar
  43. Šturm S (1998) Mineralogical research of raw materials and glasses from a glass factory (year 1722 to 1741) in the Trebušica valley. Diploma thesis, Department of Geology, Faculty of Natural Sciences and Engineering, University of Ljubljana (Mineraloške preiskave surovin in stekel iz steklarne (1722–1741) v dolini Trebušice. Diplomsko delo, Oddelek za geologijo, Naravoslovnotehniška fakulteta, Univerza v Ljubljani)Google Scholar
  44. Šturm S (2004a) General geological structure of the Trebuša region (Splošna geološka zgradba ozemlja Trebuše). Trebuški zbornik, pp 69–78Google Scholar
  45. Šturm S (2004b) Geomorphological properties of the the Trebuša valley (Geomorfološke značilnosti površja doline Trebušice). Trebuški zbornik, pp 79–88Google Scholar
  46. Šturm S (2004c) Traces of volcanic activity in the Trebuša region (Sledovi vulkanizma na ozemlju Trebuše). Trebuški zbornik, pp 89–98Google Scholar
  47. Taylor CB, Brown LJ, Cunliffe JJ, Davidson PW (1992) Environmental tritium and 18O in a hydrological study of the Wairau Plain and its contributing mountain catchments, Marlborough, New Zeeland. J Hydrol 138:269–319CrossRefGoogle Scholar
  48. Tucker ME, Wright PV (1990) Carbonate Sedimentology. Wiley-Blackwell, OxfordCrossRefGoogle Scholar
  49. Verbovšek T (2008a) Influences of transmissive structures on flow and transport in karstic and fractured aquifers. PhD thesis, Department of Geology, Faculty of Natural Sciences and Engineering, University of LjubljanaGoogle Scholar
  50. Verbovšek T (2008b) Diagenetic effects on the well yield of dolomite aquifers in Slovenia. Environ Geol 53:1173–1182. doi: 10.1007/s00254-007-0707-9 CrossRefGoogle Scholar
  51. Verbovšek T, Veselič M (2008) Factors influencing the hydraulic properties of wells in dolomite aquifers of Slovenia. Hydrogeol J 16:779–795. doi: 10.1007/s10040-007-0250-5 CrossRefGoogle Scholar
  52. Vrabec M, Šmuc A, Pleničar M, Buser S (2009) Geological evolution of Slovenia—an overview (Geološki razvoj Slovenije–Povzetek). In: Pleničar M, Ogorelec B, Novak M (eds) The geology of Slovenia (Geologija Slovenije). Geološki zavod Slovenije, Ljubljana, pp 23–40Google Scholar
  53. Weaver TK, Frape SK, Cherry JA (1995) Recent cross-formational fluid flow and mixing in the shallow Michigan Basin. Geol Soc Am Bull 107:697–707CrossRefGoogle Scholar
  54. Wedepohl KK (1978) Handbook of geochemistry, Exec edn. Springer-Verlag, BerlinGoogle Scholar
  55. Yang C, Telmer K, Veizer J (1996) Chemical dynamics of the ‘St. Lawrence’ riverine system: δDH2O, 18OH2O, δ13CDIC, 34Ssulfate and dissolved 87Sr/86Sr. Geochimica Cosmochimica Acta 60:851–866. doi: 10.1016/0016-7037(95)00445-9 CrossRefGoogle Scholar
  56. Žvab Rožič P, Dolenec T, Baždarić B, Karamarko V, Kniewald G, Dolenec M (2012) Major, minor and trace element content derived from aquacultural activity of marine sediments (Central Adriatic, Croatia). Environ Sci Pollut Res 19:2708–2721CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Mojca Zega
    • 1
  • Boštjan Rožič
    • 2
  • Martin Gaberšek
    • 3
  • Tjaša Kanduč
    • 4
  • Petra Žvab Rožič
    • 2
  • Timotej Verbovšek
    • 5
  1. 1.Institute of the Republic of Slovenia for Nature ConservationNova Gorica Regional UnitNova GoricaSlovenia
  2. 2.Department of Geology, Faculty of Natural Sciences and EngineeringUniversity of LjubljanaLjubljanaSlovenia
  3. 3.Hrastnik pri Trojanah 1aTrojaneSlovenia
  4. 4.Department of Environmental ScienceJožef Stefan InstituteLjubljanaSlovenia
  5. 5.Department of Geology Faculty of Natural Sciences and EngineeringUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations