Environmental Earth Sciences

, Volume 74, Issue 3, pp 2315–2327 | Cite as

A dynamic map application for the assessment of groundwater vulnerability to pollution

  • L. Duarte
  • A. C. Teodoro
  • J. A. Gonçalves
  • A. J. Guerner Dias
  • J. Espinha Marques
Original Article


Groundwater pollution is a major environmental concern at global scale. It usually restricts the use of water resources for domestic, agricultural or industrial purposes, with significant impact on human well-being. Aquifer remediation may be very difficult or even impossible due to technical and/or economic constraints. To help prevent groundwater pollution, several cartographic methods have already been developed. Geographical information systems (GIS) provide useful tools for understanding the spatial distribution of groundwater vulnerability to pollution. This paper presents a new tool to produce groundwater vulnerability to pollution maps under a GIS open source environment. This application was developed within the QGIS software. The tool determines the spatial distribution of the DRASTIC index and incorporates all the procedures required under a single plugin. One of the main advantages of this application is the easiness to use and the possibility of viewing different results modifying indexes, weight values and table descriptions or importing the input data attribute file description. The user can also generate the maps according to his perception regarding each aquifer system. This application is free and presents a valuable contribution to assess and map groundwater vulnerability to pollution through a GIS open source.


Groundwater vulnerability DRASTIC index Open source software QGIS 



The research was conducted within the framework of the PEst-OE/CTE/UI0190/2011 project (CICGE) and PEst-OE/CTE/UI0039/2014 project (CGUP).


  1. Aller L, Lehr JH, Petty R, Bennet T (1987) DRASTIC: a standardized system to evaluate groundwater pollution potential using hydrogeologic settings. National Water Well Association Worthington, OhioGoogle Scholar
  2. Attoui B, Kherici N, Kherici-Bousnoubra H (2014) Use of a new method for determining the vulnerability and risk of pollution of major groundwater reservoirs in the region of Annaba-Bouteldja (NE Algeria). Environ Earth Sci 72:891–903CrossRefGoogle Scholar
  3. Bonham-Carter GF (1994) Geographic Information Systems for Geoscientists, Modelling with GIS. Computer Method in Geosciences 13:152–153Google Scholar
  4. Borevsky B, Yazvin L, Margat L (2004) Importance of groundwater for water supply. In: Zektser IS and Everett, LG (eds) Groundwater resources of the world and their use. IHP-VI, Series on Groundwater, UNESCO, Paris, No. 6, pp 20–24Google Scholar
  5. Carreira PM, Marques JM, Espinha Marques J, Chaminé HI, Fonseca PE, Monteiro Santos F, Moura RM, Carvalho JM (2011) Defining the dynamics of groundwater in Serra da Estrela Mountain area, central Portugal: an isotopic and hydrogeochemical approach. Hydrogeol J 19:117–131. doi: 10.1007/s10040-010-0675-0 CrossRefGoogle Scholar
  6. Charles EG, Behroozi C, Schooley J, Hoffman JL (1993) A method for evaluating ground-water-recharge areas in New Jersey. New Jersey Geological Survey, Geological Survey Report GSR-32, TrentonGoogle Scholar
  7. Custódio E, Llamas MR (1996) Hidrologia subterránea (Groundwater hydrology), vol 2. Omega, Barcelona, p 2350Google Scholar
  8. Deutsch C, Journel A (1992) GSLIB: Geostatistical Software Library and User’s Guide, p 340Google Scholar
  9. Domenico PA, Schwartz FW (1990) Physical and chemical hydrogeology. John Wiley & Sons, New York, p 506Google Scholar
  10. Edet A (2014) An aquifer vulnerability assessment of the Benin Formation aquifer, Calabar, southeastern Nigeria, using DRASTIC and GIS approach. Environ Earth Sci 71:1747–1765CrossRefGoogle Scholar
  11. Espinha Marques J, Duarte JM, Constantino AT, Martins AA, Aguiar C, Rocha FT, Inácio M, Marques JM, Chaminé HI, Teixeira J, Samper J, Borges FS, Carvalho JM (2007) Vadose zone characterisation of a hydrogeologic system in a mountain region: Serra da Estrela case study (Central Portugal). In: L Chery, Gh de Marsily (eds) Aquifer systems management: Darcy’s legacy in a World of impending water shortage, SP-10 Selected papers on Hydrogeology, IAH, Taylor & Francis Group, London, 10, pp 207–221Google Scholar
  12. Espinha Marques J, Samper J, Pisani B, Alvares D, Carvalho JM, Chaminé HI, Marques JM, Vieira GT, Mora C, Borges FS (2011a) Evaluation of water resources in a high-mountain basin in Serra da Estrela, Central Portugal, using a semi-distributed hydrological model. Environ Earth Sci 62:1219–1234. doi: 10.1007/s12665-010-0610-7 CrossRefGoogle Scholar
  13. Espinha Marques J, Carvalho A, Marques JM, Chaminé HI, Guerner Dias A, Moura R, Carreira P, Neves O, Samper J, Rocha FT (2011b) A methodology for assessing the impact of the use of road salt on groundwater resources in a mountain environment (Serra da Estrela, Central Portugal). Cadernos Lab. Xeolóxico de Laxe 36:79–98Google Scholar
  14. Espinha Marques J, Marques JM, Chaminé HI, Carreira PM, Fonseca PE, Monteiro Santos FA, Moura R, Samper J, Pisani B, Teixeira J, Carvalho JM, Rocha F, Borges FS (2013) Conceptualizing a mountain hydrogeologic system by using an integrated groundwater assessment (Serra da Estrela, Central Portugal): a review. Geosci J 17(3):371–386. doi: 10.1007/S12303-013-0019-X CrossRefGoogle Scholar
  15. Ferreira N, Vieira G (1999) Guia geológico e geomorfológico do Parque Natural da Serra da Estrela. Locais de interesse geológico e geomorfológico. Parque Natural da Serra da Estrela. Instituto da Conservação da Natureza/Instituto Geológico e Mineiro (Geologic and geomorphological guide of Serra da Estrela Natural Park. Geologic and geomorphological sites. Serra da Estrela Natural Park. Nature conservation Institute/Geologic and miner Institute), Lisbon. p 112, 1 mapGoogle Scholar
  16. Fijani E, Nadiri AA, Moghaddam AA, Tsai FTC, Dixon B (2013) Optimization of DRASTIC method by supervised committee machine artificial intelligence to assess groundwater vulnerability for Maragheh-Bonab plain aquifer, Iran. J Hydrol 503:89–100CrossRefGoogle Scholar
  17. Foster SSD (1987) Fundamental concepts in aquifer vulnerability, pollution risk and pro- tection strategy. In: Van Duijvenbooden W and van Waegeningh HG (eds) Vulnerability of soil and groundwater to pollutants. Proceedings and information no. 38. TNO Committee on Hydrological Research, pp 69–86Google Scholar
  18. Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs, p 604Google Scholar
  19. GDAL Geospatial Data Abstraction Library (2013). Accessed April 2014
  20. GRASS GIS (2014) The world’s leading Free GIS software. Accessed April 2014
  21. Haber J, Zeilfelder F, Davydov O, Seidel HP (2001) Smooth approximation and rendering of large scattered data sets. In: Th Ertl, K Joy and A Varshney (eds) Proceedings of IEEE Visualization 2001, IEEE Computer Society, 571, pp 341–347Google Scholar
  22. Job AC (2010) Groundwater Economics. CRC Press, Boca Raton, p 650Google Scholar
  23. Li R, Merchant JW (2013) Modeling vulnerability of groundwater to pollution under fu- ture scenarios of climate change and biofuels-related land use change: a case study in North Dakota, USA. Sci Total Environ 447:32–45CrossRefGoogle Scholar
  24. Mimi ZA, Mahmoud N, Abu Madi M (2012) Modified DRASTIC assessment for intrinsic vulnerability mapping of karst aquifers: a case study. Environ Earth Sci 66:447–456CrossRefGoogle Scholar
  25. Mitasova H, Mitas L, Brown BM, Gerdes DP, Kosinovsky I (1995) Modeling spatially and temporally distributed phenomena: new methods and tools for GRASS GIS. Int J GIS Spec Issue Integr GIS Environ Model 9(4):433–446Google Scholar
  26. Mitasova H, Mitas L, Harmon RS (2005) Simultaneous spline approximation and topographic analysis for lidar elevation data in open source GIS. IEEE GRSL 2(4):375–379Google Scholar
  27. Mota Pais MAA, Antunes IMRH, Albuquerque MTD (2012) Vulnerability mapping in a thermal zone, Portugal—a study based on DRASTIC index and GIS, Multi- disciplinary Research on Geographical Information in Europe and Beyond, Proceedings of the AGILE’2012 International Conference on Geographic Information Science, Avignon, April, 24–27. ISBN: 978-90-816960-0-5Google Scholar
  28. NAP (National Academy Press) (1993) Ground water vulnerability assessment—contamination potential under conditions of uncertainty, Washington DC, p 189Google Scholar
  29. Neshat A, Pradhan B, Pirasteh S, Shafri HZM (2014) Estimating groundwater vulnerability to pollution using a modified DRASTIC model in the Kerman agricultural area, Iran. Environ Earth Sci 71:3119–3131CrossRefGoogle Scholar
  30. Numpy API (2013) Numpy reference. Accessed April 2014
  31. Olaya V (2004) A gentle introduction to SAGA GIS, Edition 1.1Google Scholar
  32. PyQt4 API (2014) PyQt Class Reference. Accessed April 2014
  33. Python (2014) Python Programming Language. Accessed April 2014
  34. QGIS (2014) Quantum GIS Project. Accessed April 2014
  35. QGIS API (2014) Quantum GIS API Documentation. Accessed April 2014
  36. Ribeiro A, Munhá J, Dias R, Mateus A, Pereira E, Ribeiro L, Fonseca PE, Araújo A, Oliveira JT, Romão J, Chaminé HI, Coke C, Pedro J (2007) Geodynamic evolution of the SW Europe Variscides. Tectonics 26(TC6009):1–24. doi: 10.1029/2006TC002058 Google Scholar
  37. SAGA (2014) System for Automated Geoscientific Analyses. Accessed April 2014
  38. Saidi S, Bouri S, Ben Dhia H (2010) Groundwater vulnerability and risk mapping of the Hajeb-jelma aquifer (Central Tunisia) using a GIS-based DRASTIC model. Environ Earth Sci 59:1579–1588CrossRefGoogle Scholar
  39. Sener E, Davraz A (2013) Assessment of groundwater vulnerability based on a modified DRASTIC model, GIS and an analytic hierarchy process (AHP) method: the case of Egirdir Lake basin (Isparta, Turkey). Hydrogeol J 21:701–714CrossRefGoogle Scholar
  40. SEXTANTE (2013) The SEXTANTE framework. Accessed April 2014
  41. Shirazi SM, Imran HM, Akib Shatirah (2012) GIS-Based DRASTIC method for groundwater vulnerability assessment: a review. J Risk Res 15(8):991–1011CrossRefGoogle Scholar
  42. Shirazi SM, Imran HM, Akib S, Yusop Z, Harun ZB (2013) Groundwater vulnerability assessment in the Melaka State of Malaysia using DRASTIC and GIS techniques. Environ Earth Sci 70:2293–2304. doi: 10.1007/s12665-013-2360-9 CrossRefGoogle Scholar
  43. Stallman P (2007) Why ‘Open Source’ misses the point of free software, GNU Operating System. Accessed February 2011
  44. Teodoro AC, Duarte L (2013) Forest Fire risk maps: a GIS open source application—a case study in Norwest of Portugal. Int J Geogr Inf Sci 27(4):699–720CrossRefGoogle Scholar
  45. Tilahun K, Merkel BJ (2010) Assessment of groundwater vulnerability to pollution in Dire Dawa, Ethiopia using DRASTIC. Environ Earth Sci 59:1485–1496CrossRefGoogle Scholar
  46. Wang J, He J, Chen H (2012) Assessment of groundwater contamination risk using hazard quantification, a modified DRASTIC model and groundwater value, Beijing Plain, China. Sci Total Environ 432:216–226CrossRefGoogle Scholar
  47. Yin LH, Zhang EY, Wang XY, Wenninger J, Dong JQ, Guo L, Huang JT (2013) A GIS-based DRASTIC model for assessing groundwater vulnerability in the Ordos Plateau, China. Environ Earth Sci 69:171–185CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • L. Duarte
    • 1
    • 2
  • A. C. Teodoro
    • 1
    • 2
  • J. A. Gonçalves
    • 2
    • 3
  • A. J. Guerner Dias
    • 2
  • J. Espinha Marques
    • 1
    • 2
  1. 1.Earth Sciences Institute (ICT), Pole of the FCUP-Porto UniversityUniversity of PortoPortoPortugal
  2. 2.Department of Geosciences, Environment and Land Planning, Faculty of SciencesUniversity of PortoPortoPortugal
  3. 3.CIIMARUniversity of PortoPortoPortugal

Personalised recommendations