Advertisement

Environmental Earth Sciences

, Volume 74, Issue 2, pp 1743–1753 | Cite as

Spatio-temporal variability of net ecosystem productivity over India and its relationship to climatic variables

  • R. K. NayakEmail author
  • N. R. Patel
  • V. K. Dadhwal
Original Article

Abstract

The net ecosystem productivity (NEP) represents net carbon exchange between the terrestrial ecosystem and the atmosphere that plays a crucial role on the control of the atmospheric CO2 in different time scales. The present study examined the spatial and temporal variability of NEP over India during 1981–2006 in relation to the climatic variables using the Carnegie–Ames–Stanford Approach (CASA) terrestrial ecosystem model and regional databases on the land surface-vegetation characteristics and the climatic parameters. At national scale the NEP exhibits semi-annual cycle with primary positive values up to 80 TgC month−1 during August–December, secondary positive values up to 15 TgC month−1 during January–March and negative values up to −70 TgC month−1 during April–July. The estimated long-term NEP budget for the country is 10 TgC year−1. It had undergone substantial inter-annual change in response to the climate variability. In the early 1980s, the Indian terrestrial biosphere remained a source and later became a sink of carbon during four pentad periods. The NEP budgets are positive for all the extreme years with severe flood and drought conditions except 1982. The normal years have either positive or negative NEP budgets. The precipitation-induced reduction of the net primary production (NPP) dominates the NEP variability in dry years, whereas in good monsoon years the precipitation-induced enhancement of the soil respiration (Rh) dominates the NEP variability.

Keywords

Terrestrial ecosystem Net ecosystem productivity Net primary productivity Soil respiration Carbon cycle Climatic control 

References

  1. Agrawal S, Joshi PK, Shukla Y, Roy PS (2003) SPOT VEGETATION multi temporal data for classifying vegetation in south central Asia. Curr Sci 84(11):1440–1448Google Scholar
  2. Biggs TW, Christopher AS, Rajagopalan B, Turral HN (2007) Trends in solar radiation due to clouds and aerosols, southern India, 1952–1997. Int J Climatol 27:1505–1518CrossRefGoogle Scholar
  3. Cao MK, Prince SD, Tao B, Small J, Li KR (2005) Regional pattern and interannual variation in global terrestrial carbon uptake in response to change in climate and atmosphere CO2. Tellus 57B:210–217CrossRefGoogle Scholar
  4. Chhabra A, Palria S, Dadhwal VK (2002) Spatial distribution of phytomass carbon pool in Indian forests. Glob Change Biol 8(12):1230–1239CrossRefGoogle Scholar
  5. Dash SK, Hunt JCR (2007) Variability of climate change in India. Curr Sci 93(6):782–788Google Scholar
  6. Haripriya GS (2000) Estimates of biomass in Indian forests. Biomass Bioenerg 19:245–258CrossRefGoogle Scholar
  7. Haripriya GS (2003) Carbon budget of the Indian forest ecosystem. Clim Change 56:291–319CrossRefGoogle Scholar
  8. Hingane LS (1991) Some aspect of carbon dioxide exchange between atmosphere and Indian plant biota. Clim Change 18:425–435CrossRefGoogle Scholar
  9. Jung M et al (2011) Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J Geophys Res 116:G00J07. doi: 10.1029/2010JG001566 Google Scholar
  10. Kaul M, Dadhwal VK, Mohren GMJ (2009) Land use change and net C flux in Indian forests. For Ecol Manage 258:100–108CrossRefGoogle Scholar
  11. Lal M, Singh R (2000) Carbon sequestration potential of Indian forests. J Environ Monit Assess 60:315–327CrossRefGoogle Scholar
  12. McGuire AD, Sitch S, Clein JS, Dargaville R et al (2001) Carbon balance of the terrestrial biosphere in the twentieth century: analyses of CO2, climate and land-use effects with four process-based ecosystem models. J Global Biogeochem Cycle 15:183–206CrossRefGoogle Scholar
  13. Nayak RK, Patel NR, Dadhwal VK (2010) Estimation and analysis of terrestrial net primary productivity over India by remote-sensing-driven terrestrial biosphere model. J Environ Monit Assess 170(1–4):195–213CrossRefGoogle Scholar
  14. Nayak RK, Patel NR, Dadhwal VK (2013) Inter-annual variability and climate control of terrestrial of net primary productivity over India. Int J Climatol 33(1):132–142CrossRefGoogle Scholar
  15. Pandya MR, Singh RP, Dadhwal VK (2004) A signal of increased vegetation activity of India from 1981 to 2001 observed using satellite-derived fraction of absorbed photosynthetically active radiation. Curr Sci 87(8):1122–1126Google Scholar
  16. Patra PK, Behera SK, Herman JR, Maksyutoy S, Akimoto H, Yamagata T (2005) The Indian summer monsoon rainfall: interplay of coupled dynamics, radiation and cloud microphysics. Atmos Chem Phys 5:2181–2188CrossRefGoogle Scholar
  17. Piao S, Fang J, Ciais P, Peylin P, Huang Y, Sitch S, Wang T (2009) The carbon balance of terrestrial ecosystems in China. Nature 458:1009–1013CrossRefGoogle Scholar
  18. Potter CS, Klooster SA, Brooks V (1999) Interannual variability in terrestrial net primary production: exploration of trends and controls on regional to global scales. Ecosystems 2:36–48CrossRefGoogle Scholar
  19. Potter CS, Klooster SA, Myneni RB, Genovese V, Tan PN, Kumar V (2003) Continental scale comparisons of terrestrial carbon sinks estimated from satellite data and ecosystem modeling 1982–1998. Glob Planet Change 39:201–213CrossRefGoogle Scholar
  20. Prentice IC, Farquhar GD, Fasham MJR, Goulden ML, Heimann M, Jaramillo VJ, Kheshgi HS, Quéré CLe, Scholes RJ, Wallace DWR (2001) The carbon cycle and atmospheric carbon dioxide, in climate change 2001: the scientific basis. In: Houghton JT, DingY, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Contribution of Working Group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 183–237Google Scholar
  21. Ravindranath NH, Hall DO (1994) Indian forest conservation and tropical deforestation. Ambio 23:521–523Google Scholar
  22. Ravindranath NH, Somashekhar BS, Gadgil M (1997) Carbon flows in Indian forests. Clim Change 35:297–320CrossRefGoogle Scholar
  23. Reynolds CA, Jackson TJ, Rawls WJ (1999) Estimated available water content from the FAO soil map of the world, global soil profile databases, pedotransfer functions. NOAA National Geophysical Data Center, BoulderGoogle Scholar
  24. Sabine CL, Heiman M, Artaxo P, Bakker DCE, Chen C-TA, Field CB, Gruber N, LeQuéré C, Prinn RG, Richey JE, Romero-Lankao P, Sathaye JA, Valentini R (2004) Current status of past trends of the global carbon cycle. In: Field CB, Raupach MR (eds) The Global carbon cycle, integrating humans, climate and the natural world. Island Press, Washington, DC, pp 17–44Google Scholar
  25. Saigusa N, Ichii K, Murakami H, Hirata R, Asanuma J, Den H et al (2010) Impact of meteorological anomalies in the 2003 summer on gross primary productivity in East Asia. Biogeosciences 7:641–655CrossRefGoogle Scholar
  26. Schaefer K, Denning AS, Neil Suits, Kaduk J, Baker I, Los S, Prihodko L (2002) Effect of climate on interannual variability of terrestrial CO2 fluxes. Glob Biogeochem Cycle 16(4):1102. doi: 10.1029/2002GB001928 Google Scholar
  27. Schimel D et al (2001) Recent patterns and mechanisms of carbon exchanges by terrestrial ecosystems. Nature 414:169–172CrossRefGoogle Scholar
  28. Tian H, Melillo JM, Kicklighter DW et al (2003) Regional carbon dynamics in monsoon Asia and its implications for the global carbon cycle. Glob Planet Change 37:201–217Google Scholar
  29. Tucker CJ, Pinzon J, Brown M et al (2005) Extended AVHRR 8-km NDVI data set comparable with MODIS and SPOT vegetation NDVI data. Int J Remote Sens 26:4485–4498CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.National Remote Sensing Centre (ISRO)HyderabadIndia
  2. 2.Indian Institute of Remote Sensing (ISRO)DehradunIndia

Personalised recommendations