Environmental Earth Sciences

, Volume 73, Issue 11, pp 6927–6937 | Cite as

Influence of added hydrogen on underground gas storage: a review of key issues

  • Viktor ReitenbachEmail author
  • Leonhard Ganzer
  • Daniel Albrecht
  • Birger Hagemann
Thematic Issue


The existing infrastructure of the natural gas transportation pipeline network and underground gas storage (UGS) facilities in Germany provides an opportunity and huge capacity to feed, transport and store hydrogen and synthetic fuel gases containing hydrogen, produced from renewable sources. At low hydrogen concentrations, only minor changes to gas transportation equipment will be required. In contrast, the UGS designed in converted gas fields and aquifers are particularly susceptible to the effect of hydrogen. Due to a lack of adequate knowledge about the hydrogen concentration in natural gas, which can be tolerated by the downhole equipment, reservoir and caprocks, the injection of natural gas containing hydrogen in the existing porous UGS is strongly limited. Key issues addressed in this paper are the change in capacity and efficiency of UGS associated with the blending of hydrogen in the stored natural gas, the geological integrity of the reservoir and caprocks, the technical integrity of gas storage wells, durability of the materials used for well completions, corrosion and environmental risks associated with the products of microbial metabolism.


Underground gas storage Hydrogen Geological integrity Durability of materials Calorific value Microbial metabolism 



This paper is based on the study DGMK 752 conducted in cooperation with many scientists from the Institute of Petroleum Engineering of the Clausthal University of Technology. The authors would like to express special thanks to Dr. Catalin Teodoriu, M.Sc. Edna Michelle Bisso, M.Sc. Florin Precup and M.Sc. Gyunay Namazova. The authors would also like to cordially thank the colleagues of the DGMK as well as the members of the gas storage expert group for their support and patience during this study.


  1. Allan MM, Turner A, Yardley BWD (2011) Relation between the dissolution rate of single minerals and reservoir rocks in acidified pore waters. Appl Geochem 26:1289–1301CrossRefGoogle Scholar
  2. Bauer S, Beyer C, Dethlefsen F, Dietrich P, Duttmann R, Ebert M, Feeser V, Goerke U, Kober R, Kolditz O, Rabbel W, Schanz T, Schafer D, Wuerdemann H, Dahmke A (2013) Impacts of the use of the geological subsurface for energy storage: an investigation concept. Environ Earth Sci 70:3935–3943CrossRefGoogle Scholar
  3. Bourgeois JP, Aupaix N, Bloise R, Millet JL (1979) Proposition d’explication de la formation d‘hydrogène sulfuré dens les stockages souterrains de gas naturel par reduction des sulfure meinéraux de la roche magasin. Revue de l’Institut Français du Pétrole 34:371–386Google Scholar
  4. Buzek F, Onderka V, Vancura P, Wolf I (1994) Carbon isotope study of methane production in a town gas storage reservoir. Fuel 73(5):747–752CrossRefGoogle Scholar
  5. Carden PO, Paterson L (1979) Physical, chemical and energy aspects of underground hydrogen storage. Int J Hydrog Energy 4(6):559–569CrossRefGoogle Scholar
  6. Cord-Ruwisch R, Seitz HJ, Conrad R (1988) The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor. Arch Microbiol 149:350–357CrossRefGoogle Scholar
  7. Crotogino F (1996) SMRI reference for external well mechanical integrity testing/performance, data evaluation and assessment. Proceedings of the SMRI spring meeting, summary of final project report 95-0001 Short Class, HoustonGoogle Scholar
  8. Crotogino F, Donadei S, Bünger U, Landinger H (2010) Large-scale hydrogen underground storage for securing future energy supplies. Research paper presented at the 18th World Hydrogen Energy Conference held 16–21 May 2010 in Essen, GermanyGoogle Scholar
  9. Crotogino F, Hamelmann R (2007) Wasserstoff-Speicherung in Salzkavernen zur Glättung des Windstromangebots. KBB Underground Technologies GmbHGoogle Scholar
  10. Dethlefsen F, Ebert M, Dahmke A (2014) A geological database for parameterization in numerical modeling of subsurface storage in northern Germany. Environ Earth Sci 71:2227–2244CrossRefGoogle Scholar
  11. DVGW (Deutscher Verein des Gas-und Wasserfaches): Technische Regel–Arbeitsblatt DVGW G 260 (A), Gasbeschaffenheit (2013)Google Scholar
  12. DVGW (Deutscher Verein des Gas-und Wasserfaches): Technische Regel–Arbeitsblatt DVGW G 262 (A), Nutzung von Gasen aus regenerativen Quellen in der öffentlichen Gasversorgung (2011)Google Scholar
  13. Fischer-Appelt K, Baltes B (2010) Abwägungsmethodik für den Vergleich von Endlagersystemen in unterschiedlichen Wirtsgesteinsformationen, Anleitung zur Anwendung der Abwägungsmethodik, Abschlussbericht zum Vorhaben 3607R02589 VerSi Evaluierung der Vorgehensweise“, Gesellschaft für Anlagen und Reaktorsicherheit (GRS) mbHGoogle Scholar
  14. Gangloff RP, Somerday BP (eds) (2012) Gaseous hydrogen embrittlement of materials in energy technologies. The problem, its characterization and effects on particular alloy classes, vol 1. Woodhead Publishing, SawstonGoogle Scholar
  15. Ganzer L, Reitenbach V, Pudlo D, Panfilov M, Albrecht Gaupp R (2013) The H2STORE project-experimental and numerical simulation approach to investigate processes in underground hydrogen reservoir storage”, paper SPE-164936-MS, EAGE annual conference & exhibition incorporating spe europec held in London, UKGoogle Scholar
  16. Gaucher EC, Tournassat C, Pearson FJ, Blanc P, Crouzet C, Lerouge C, Altmann S (2009) A robust model for pore-water chemistry of clayrock. Geochim Cosmochim Acta 73:6470–6487CrossRefGoogle Scholar
  17. Hagemann B, Rasoulzadeh M, Panfilov M, Ganzer L, and Reitenbach V (2014) Hydrogenization of underground storage of natural gas-impact of hydrogen on bio-chemical transformations of stored gas. In: Paper presented at the ECMOR XIV-14th European conference on the mathematics of oil recovery held 14–18 Sept 2014 in Athens, GreeceGoogle Scholar
  18. Jones AA, Carpenter A (1991) New latex, expanding thixotropic cement systems improve job performance and reduce costs, Paper SPE 21010 presented at the SPE International Symposium on Oilfield Chemistry held 20–22 Feb 1991 in Anaheim, CaliforniaGoogle Scholar
  19. Kleinitz W, Boehling E (2005) Underground gas storage in porous media—operating experience with bacteria on gas quality. Paper SPE 94248 presented at the SPE Europec/EAGE Annual Conference held in Madrid13–16 June 2005Google Scholar
  20. Koga A, Uchida K, Yamabe J, Nishimura S (2011) Evaluation on high-pressure hydrogen decompression failure of rubber O-ring using design of experiments. Technical Paper 20114636, presented at EVTec 11Google Scholar
  21. Krooss B (2008) Evaluation of database on gas migration through clayey host rocks. Research report to Belgian National Agency for radioactive waste and enriched fissile material (ONDRAF-NIRAS), RWTH AachenGoogle Scholar
  22. LBEG (Landesamt für Bergbau, Energie und Geologie) (2012) Erdöl und Erdgas in der Bundesrepublik Deutschland 2011, Jahresbericht LBEG, HannoverGoogle Scholar
  23. Li S, Dong M, Li Z, Hunag S, Qing H, Nickel E (2005) Gas breakthrough pressure for hydrocarbon reservoir seal rocks: implications for the security of long term CO2 storage in the Weyburn field. Geofluids 5:326–334CrossRefGoogle Scholar
  24. Li Z, Dong M, Li S, Huang S (2006) CO2 sequestration in depleted oil and gas reservoirs—caprock characterization and storage capacity. Energy Convers Manag 47:1372–1382CrossRefGoogle Scholar
  25. Lovley DR, Goodwin S (1988) Hydrogen concentration as an indicator of the predominant terminal electron-accepting reactions in aquatic sediments. Geochim Cosmochim Acta 52:2993–3003CrossRefGoogle Scholar
  26. Melaina MW, Antonia O, Penev M (2013) Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues. Technical Report NREL/TP-5600-51995 of the National Renewable Energy Laboratory (NREL) of the US Department of EnergyGoogle Scholar
  27. Mueller-Syring G, Henel M, Köppel W, Mlaker H, Hoecher T, Sterner M (2013) Entwicklung von modularen Konzepten zur Erzeugung, Speicherung und Einspeisung von Wasserstoff und Methan in Erdgasnetz. Abschlussbericht, DVGW G1-07-10Google Scholar
  28. Panfilov M (2010) Underground storage of hydrogen: in situ self-organization and methane generation. Transp Porous Media 85:841–865CrossRefGoogle Scholar
  29. Panfilov M, Gravier G, Fillacier S (2006) Underground storage of H2 and H2-CO2-CH4 mixtures. Paper A003 presented at the EAGE 10th European Conference on the Mathematics of Oil Recovery held 4–7 Sept 2016 in AmsterdamGoogle Scholar
  30. Pichler M (2010) Assessment of hydrogen-rock interactions during geological storage of CH4-H2 mixtures. Master Thesis, LeobenGoogle Scholar
  31. Pokrovsky OS, Golubev SV, Scott J (2005) Dissolution kinetics of calcite, dolomite and magnesite at 25 8C and 0 to 50 atm pCO2. Chemical Geology 217:239–255CrossRefGoogle Scholar
  32. Pudlo D, Reitenbach V, Albrecht D, Ganzer L, Gernert U, Wienand J, Kohlhepp B, Gaupp R (2012) The impact of diagenetic fluid–rock reactions on Rotliegend sandstone composition and petrophysical properties (Altmark area, central Germany). Environ Earth Sci 67:369–384CrossRefGoogle Scholar
  33. Reitenbach V, Albrecht D, Ganzer L (2014) Influence of hydrogen on underground gas storage. Literature Study DGMK 752, DGMK HamburgGoogle Scholar
  34. San Marchi C, Somerday BP, Tang X, Schiroky GH (2008) Effects of alloy composition and strain hardening on tensile fracture of hydrogen-precharged type 316 stainless steels. Int J Hydrogen Energy 33:889–904CrossRefGoogle Scholar
  35. Schmitz S. (2011) Einfluss von Wasserstoff als Gasbegleitstoff auf Untergrundspeicher. DBI-Fachforum Energiespeicherkonzepte und WasserstoffGoogle Scholar
  36. Smigan P, Greksak M, Kozankova J, Buzek F, Onderka V, Wolf I (1990) Methanogenic bacteria as a key factor involved in changes of town gas in an underground reservoir. FEMS Microbiol Ecol 73:221–224CrossRefGoogle Scholar
  37. Szummer A, Jezierska E, Lublinska K (1999) Hydrogen surface effects in ferritic stainless steels. J Alloy Compd 293–295:356–360CrossRefGoogle Scholar
  38. Truche L, Berger G, Albrecht A, Giffaut E (2010) Abiotic nitrate and sulphate reduction by hydrogen: a comparative experimental study. In: Paper O/09/5 presented at the 4th International Meeting in Natural and Engineering barriers for radioactive waste confinement, Nantes, France, pp 181–182Google Scholar
  39. Truche L, Jodin-Caumon MC, Lerouge C, Berger B, Mosser R, Giffaut E, Michau N (2013) Sulphide mineral reactions in clay-rich rock induced by high hydrogen pressure, Application to disturbed or natural settings up to 250 °C and 30 bar. J Chem Geol 351:217–228CrossRefGoogle Scholar
  40. Velde B, Meunier A (2008) The origin of clay minerals in soils and weathered rocks. SpringerGoogle Scholar
  41. Xu K (2012) Hydrogen embrittlement of carbon steels and their welds. In: Gangloff RP, Somerday BP (eds) Gaseous hydrogen embrittlement of materials in energy technologies, vol 1., The problem, its characterization and effects on particular alloy classesWoodhead Publishing, Sawston, pp 526–558CrossRefGoogle Scholar
  42. Yamabe J, Nishimura S (2011) Influence of carbon black on decompression failure and hydrogen permeation properties of filled ethylene-propylene-diene-methylene rubbers exposed to high-pressure hydrogen gas. J Appl Polym Sci 122:3172–3187CrossRefGoogle Scholar
  43. Zachariah-Wolff JL, Egyedi TM, Hemmes K (2007) From natural gas to hydrogen via the Wobbe index: the role of standardized gateways in sustainable infrastructure transitions. Int J Hydrog Energy 32(9):1235–1245CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Viktor Reitenbach
    • 1
    Email author
  • Leonhard Ganzer
    • 1
  • Daniel Albrecht
    • 1
  • Birger Hagemann
    • 1
  1. 1.Institute of Petroleum Engineering (ITE)Clausthal University of TechnologyClausthal-ZellerfeldGermany

Personalised recommendations