Environmental Earth Sciences

, Volume 73, Issue 8, pp 4861–4871 | Cite as

Challenges and opportunities of German-Chinese cooperation in water science and technology

  • Cui ChenEmail author
  • Hilmar Börnick
  • Qinghua Cai
  • Xiaohu Dai
  • Sonja C. Jähnig
  • Yanlong Kong
  • Peter Krebs
  • Claudia Kuenzer
  • Harald Kunstmann
  • Yang Liu
  • Erik Nixdorf
  • Zhonghe Pang
  • Michael Rode
  • Christoph Schueth
  • Yonghui Song
  • Tianxiang Yue
  • Kuangxin Zhou
  • Jin Zhang
  • Olaf Kolditz
International View Point and News

Due to rapid economic development and population growth, China is facing severe water problems that include sea-level rise and increasing salinization, floods, water pollution, water shortage, soil erosion and ecosystem deterioration, as well as biodiversity loss. In recent decades, China is progressively more concerned with its water issues that are now at the center of social and political attention. Having to overcome similar challenges, Germany has taken a leading role in the field of water sciences and technology. In particular, China can benefit from the lessons learnt in Germany concerning the rehabilitation of water resources in areas heavily affected by chemical industry and mining after the reunification in 1989. German-Chinese cooperation in water sciences started over 25 years ago and dealt with increasing challenges in the 21st century. Following the open space workshop during the Water Research Horizon Conference in Berlin 2014, this article provides a view of some of the challenges and potential opportunities of German-Chinese cooperation in water science and technology.


  1. Bauer S, Beyer C, Kolditz O (2006) Assessing measurement uncertainty of first-order degradation rates in heterogeneous aquifers. Water Resour Res 42(1):W01420. doi: 10.1029/2004WR003878 Google Scholar
  2. Beinhorn M, Dietrich P, Kolditz O (2005) 3-D numerical evaluation of density effects on tracer tests. J Contam Hydrol 81:89–105CrossRefGoogle Scholar
  3. Boyacioglu H, Vetter T, Krysanova V, Rode M (2012) Modeling the impacts of climate change on nitrogen retention in a 4th order stream. Clim Change 113:981–999CrossRefGoogle Scholar
  4. Centler F, Shao H, Park C-H, de Biase C, Kolditz O, Thullner M (2010) GeoSysBRNS—a flexible multi-dimensional reactive transport model for simulating biogeochemical subsurface processes. Comput Geosci 36(3):397–405. doi: 10.1016/j.cageo.2009.06.009 CrossRefGoogle Scholar
  5. Chen F, Dudhia J (2001) Coupling an advanced land-surface hydrology model with the PennState NCAR MM5 modeling system. Part I: model description and implementation. Mon Weather Rev 129:569–585CrossRefGoogle Scholar
  6. Chen Y, Liu QQ (2014) On the horizontal distribution of algal-bloom in Chaohu Lake and its formation process. Acta Mech Sin 30(5):656–666CrossRefGoogle Scholar
  7. Chen C, Hagemann S, Liu J (2014) Assessment of impact of climate change on the blue and green water resources in large river basins in China. Environ Earth Sci. doi: 10.1007/s12665-014-3782-8 Google Scholar
  8. Curtin R, Prellezo R (2010) Understanding marine ecosystem based management: a literature review. Mar Policy 34(5):821–830CrossRefGoogle Scholar
  9. Döll P et al (2009) Global-scale analysis of river flow alterations due to water withdrawals and reservoirs. Hydrol Earth Syst Sci 13:2413–2432CrossRefGoogle Scholar
  10. Domisch S, Jähnig SC, Simaika JP, Kuemmerlen M, Stoll S (2015) Application of species distribution models in stream ecosystems: the challenge of spatial scale, environmental predictors and species occurrence data. Fundam Appl Limnol (Archiv für Hydrobiologie)Google Scholar
  11. Dou M, Wang YY, Li CY (2014) Oil leak contaminates tap water: a view of drinking water security crisis in China. Environ Earth Sci 72:4219–4221CrossRefGoogle Scholar
  12. Econet China (2014) About Econet china Accessed 20 Sept 2014
  13. Emili E, Popp C, Wunderle S, Zebisch M, Petitta M (2011) Mapping particulate matter in alpine regions with satellite and ground-based measurements: an exploratory study for data assimilation. Atmos Environ 45:4344–4353CrossRefGoogle Scholar
  14. European Commission (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy (Water Framework Directive). Official Journal of the European Communities C L 327Google Scholar
  15. Federal Ministry of Education and Research (BMBF 2012) Without water, there is no life, 19.03.2012. Accessed 20 Sept 2014
  16. Fersch B, Wagner S, Rummler T, Gochis D, Kunstmann H (2013) Impact of groundwater dynamics and soil type on modeling coupled water exchange processes between land and, IAHS publication 359, Clim Land Surface Changes Hydrol 140–145Google Scholar
  17. Foreign Economic Cooperation Office (FECO 2014) of Ministry of Environmental Protection: The Sino-German Environmental Cooperation. Accessed 20 Sept 2014
  18. German Water Partnership (GWP 2014) Networking is our business—German Water Partnership. Accessed 20 Sept 2014
  19. Grathwohl P, Rügner H, Wöhling T, Osenbrück K, Schwientek M, Gayler S, Wollschläger U, Selle B, Pause M, Delfs J-O, Grzeschik M, Weller U, Ivanov M, Cirpka OA, Maier U, Kuch B, Nowak W, Wulfmeyer V, Warrach-Sagi K, Streck T, Attinger S, Bilke L, Dietrich P, Fleckenstein JH, Kalbacher T, Kolditz O, Rink K, Samaniego L, Vogel H-J, Werban U, Teutsch G (2013) Catchments as reactors—a comprehensive approach for water fluxes and solute turn-over. Environ Earth Sci 69(2):317–334. doi: 10.1007/s12665-013-2281-7 CrossRefGoogle Scholar
  20. Hejazi M et al (2014) Long-term global water projections using six socioeconomic scenarios in an integrated assessment modeling framework. Technol Forecast Soc Change 81:205–226CrossRefGoogle Scholar
  21. Hou X, Ying L, Chang Y, Qian SS, Zhang Y (2014) Modeling of non-point source nitrogen pollution from 1979 to 2008 in Jiaodong Peninsula, China. Hydrol Process 28:3264–3275CrossRefGoogle Scholar
  22. Jähnig SC, Kuemmerlen M, Kiesel J, Domisch S, Cai Q, Schmalz B, Fohrer N (2012) Modelling of riverine ecosystems by integrating models: conceptual approach, a case study and research agenda. J Biogeogr 39:2253–2263CrossRefGoogle Scholar
  23. Jeltsch F et al (2013) How can we bring together empiricists and modellers in functional biodiversity research? Basic Appl Ecol 14(2):93–101CrossRefGoogle Scholar
  24. Jiang S, Jomaa S, Rode M (2014) Modelling inorganic nitrogen leaching in nested mesoscale catchments in central Germany. Ecohydrology. doi: 10.1002/eco.1462 Google Scholar
  25. Kalbacher T, Delfs JO, Shao H, Wang W, Walther M, Samaniego L, Schneider C, Musolff A, Centler F, Sun F, Hildebrandt A, Liedl R, Borchardt D, Krebs P, Kolditz O (2012) The IWAS-ToolBox: Software Coupling for an Integrated Water Resources Management. Environ Earth Sci 65(5):1367–1380. doi: 10.1007/s12665-011-1270-y CrossRefGoogle Scholar
  26. Kalbus E, Kalbacher T, Kolditz O, Krüger E, Seegert J, Teutsch G, Krebs P, Borchardt D (2012) IWAS—integrated water resources management under different hydrological, climatic and socio-economic conditions, IWAS SI Editorial. Environ Earth Sci 65(5):1363–1366. doi: 10.1007/s12665-011 CrossRefGoogle Scholar
  27. Ke X (2014) Commentary: Xi’s visit offers historic opportunity to advance China-Germany cooperation. Xinhuanet. Accessed 18 Sept 2014
  28. Kolditz O, Rink K, Shao HB, Kalbacher T, Zacharias S, Kunkel R, Dietrich P (2012) International viewpoint and news: data and modelling platforms in environmental earth sciences. Environ Earth Sci 66:1279–1284. doi: 10.1007/s12665-012-1661-8 CrossRefGoogle Scholar
  29. Kong Y, Pang Z, Froehlich K (2013) Quantifying recycled moisture fraction in precipitation of an arid region using deuterium excess. Tellus 65B:19251. doi: 10.3402/tellusb.v65i0.19251 Google Scholar
  30. Kuemmerlen M, Schmalz B, Guse B, Cai Q, Fohrer N, Jähnig SC (2014) Integrating catchment properties in small scale species distribution models of stream macroinvertebrates. Ecol Model 277:77–86CrossRefGoogle Scholar
  31. Kuenzer C (2007) Water pollution, scarcity and distribution challenges. Bus Forum China 02(07):63–65Google Scholar
  32. Kuenzer C, Ottinger M, Liu G, Sun B, Dech S (2014) earth observation-based coastal zone monitoring of the Yellow River Delta: dynamics in China’s Second Largest Oil Producing Region over four Decades. Appl Geogr (in press)Google Scholar
  33. Kunkel R, Sorg J, Eckardt R, Kolditz O, Rink K, Vereecken H (2013) TEODOOR—a distributed geodata infrastructure for terrestrial observation data. Environ Earth Sci 69(2):507–522. doi: 10.1007/s12665-013-2370-7 CrossRefGoogle Scholar
  34. Kunstmann H, Stadler C (2005) High resolution distributed atmospheric-hydrologic modeling for Alpine catchments. J Hydrol 314:105–124CrossRefGoogle Scholar
  35. Li XG, He HY, Sun QF (2013) The shallow groundwater pollution’s assessment of west Liaohe plain (eastern). J Chem Pharm Res 5(11):290–295Google Scholar
  36. Li DF, Zuo QT, Cui GT (2014) Disposal of chemical contaminants into groundwater: viewing hidden environmental pollution in China. Environ Earth Sci 70:1933–1935CrossRefGoogle Scholar
  37. Liu J, Yang W (2012) Water sustainability for China and beyond. Science 337(6095):649–650CrossRefGoogle Scholar
  38. Liu X, Yua X, Yu K (2012) The current situation and sustainable development of water resources in China. Procedia Eng 28:522–526CrossRefGoogle Scholar
  39. Loos R, Gamlik B M, Locoro G, Rimaviciute E, Contini S, Bidoglio G (2008) EU wide monitoring survey of polar persistent pollutants in European rivers waters. JRS Scientific and Technical Reports, pp 1–51Google Scholar
  40. McLeod K, Leslie H (2009) Ecosystem-based management for the oceans. Island Press, WashingtonGoogle Scholar
  41. Ministry of Environmental Protection of the People’s Republic of China (MEP 2000) Report on the state of the environment in China 2000, Sino-German Conference for Environmental Cooperation. Accessed 20 Sept 2014
  42. Ministry of Environmental Protection of the People’s Republic of China (MEP 2012) The 12th-Five-year Plan for the Prevention and Control of Pollution from Hazardous WasteGoogle Scholar
  43. Ministry of Water Resources of the People’s Republic of China (2013) China Water Resources Bulletin 2012. China Water and Power PressGoogle Scholar
  44. Ottinger M, Kuenzer C, Liu G, Wang S, Dech S (2013) Monitoring land cover dynamics in the Yellow River Delta from 1995 to 2010 based on Landsat 5 TM. Appl Geogr 44:53–68CrossRefGoogle Scholar
  45. Paasche H et al (2014) Are Earth Sciences lagging behind in data integration Methodologies? Environ Earth Sci 71:1997–2003CrossRefGoogle Scholar
  46. Pang Z (2014) Mechanism of water cycle changes and implications on water resources regulation in Xinjiang Uygur autonomous region. Quat Sci 2014:907–917Google Scholar
  47. Pang Z, Kong Y, Froehlich K, Huang T, Yuan L, Li Z, Wang F (2011) Processes affecting isotopes in precipitation of an arid region. Tellus 63B:352–359. doi: 10.1111/j.1600-0889.2011.00532.x CrossRefGoogle Scholar
  48. Reemtsma T, Jekel M (eds) (2006) Organic Pollutants in the water cycle: properties, occurrence, analysis and environmental relevance of polar compounds. A publication of the Water Chemical SocietyGoogle Scholar
  49. Rink K, Kalbacher T, Kolditz O (2012) Visual data management for hydrological analysis. Environ Earth Sci 65(5):1395–1403. doi: 10.1007/s12665-011-1230-6 CrossRefGoogle Scholar
  50. Rode M, Suhr U, Wriedt G (2007) Multi-objective calibration of a river water quality model—information content of calibration data. Ecol Model 204(1–2):129–142CrossRefGoogle Scholar
  51. Rode M, Arhonditsis G, Balin D, Kebede T, Krysanova V, van Griensven A, van der Zee S (2010) New challenges in integrated water quality modelling. Hydrol Process 24:3447–3461CrossRefGoogle Scholar
  52. Schlüter M, McAllister RRJ, Arlinghaus R, Bunnefeld N, Eisenack K, Hölker F, Milner-Gulland EJ, Mülller B, Nicholson E, Quaas M et al (2012) New horizons for managing the environment: a review of coupled social-ecological systems modeling. Nat Res Model 25(1):219–272CrossRefGoogle Scholar
  53. Schöl A, Eidner R, Böhme M, Kirchesch V(2006) Integrierte Modellierung der Wasserbeschaffenheit mit QSim. In: Pusch, M. und Fischer, H. (Hrsg.): Stoffdynamik und Habitatstruktur in der Elbe. Konzepte für die nachhaltige Entwicklung einer Flusslandschaft. 233–242. Weißensee Verlag, Berlin, 385 S. ISBN 3-89998-011Google Scholar
  54. Schuwirth N, Reichert P (2013) Bridging the gap between theoretical ecology and real ecosystems: modeling invertebrate community composition in streams. Ecology 94(2):368–379CrossRefGoogle Scholar
  55. Shuster W, Bonta J, Thurston H, Warnemuende E, Smith D (2005) Impacts of impervious surface on watershed hydrology: a review. Urban Water Journal 2(4):263–275CrossRefGoogle Scholar
  56. Skamarock W.C, Klemp J.B, Dudhia J, Gill DO, Barker DM, Duda MG, Huang X, Wang W, Powers JG (2008) A description of the advanced research WRF version 3. Technical Report 459, NCAR, BoulderGoogle Scholar
  57. Smiatek G, Kunstmann H, Werhahn J (2012) Implementation and performance analysis of a high resolution coupled numerical weather and river runoff prediction model system for an Alpine catchment. Environ Model Softw 38:231–243. doi: 10.1016/j.envsoft.2012.06.001 CrossRefGoogle Scholar
  58. Tang DL, Kawamura H, Oh IS, Baker J (2006) Satellite evidence of harmful algal blooms and related oceanographic features in the Bohai Sea during autumn 1998. Adv Space Res 37:681–689CrossRefGoogle Scholar
  59. Tao T, Xin K (2014) Public health: a sustainable plan for China’s drinking water. Nature 511(7511):527–528. doi: 10.1038/511527a CrossRefGoogle Scholar
  60. The People’s Republic of China (2007) National implementation plan for the Stockholm convention on persistent organic pollutantsGoogle Scholar
  61. Tirado R (2008) Analysis of chemical agricultural pollution and algal blooms. Greenpeace reportGoogle Scholar
  62. U.S. EPA (2007) Developing your stormwater pollution prevention plan: a guide for construction sites. Environmental Protection Agency, Washington, DCGoogle Scholar
  63. Venohr M et al (2011) Modelling of nutrient emissions in river systems—MONERIS—methods and background. Int Rev Hydrobiol 96(5):435–483CrossRefGoogle Scholar
  64. Wagenschein D, Rode M (2008) Modelling the impact of river morphology on nitrogen retention—a case study of the Weisse Elster River (Germany). Ecol Model 211:224–232CrossRefGoogle Scholar
  65. Wagner S, Fersch B, Kunstmann H, Yuan F, Yang C, Zu Y (2013) Hydrometeorological modelling for Poyang Lake Region, China, IAHS publication 359. Climate and Land Surface Changes in Hydrology, pp 152–157Google Scholar
  66. Wan R, Cai S, Li H, Yang G, Li Z, Nie X (2014) Inferring land use and land cover impact on stream water quality using a Bayesian hierarchical modeling approach in the Xitiaoxi River Watershed, China. J Environ Manag 133:1–11CrossRefGoogle Scholar
  67. Wang SF, Tang DL, He FL, Fukuyo Y, Azanza RV (2008) Occurrences of harmful algal blooms (HABs) associated with ocean environments in the South China Sea. Hydrobiologia 596:79–93CrossRefGoogle Scholar
  68. WB (2014) China Overview. The World Bank. Accessed 18 Sept 2014
  69. WB and DRCSC (2014) Urban China: toward efficient, inclusive, and sustainable urbanization. The World Bank, Development Research Center of the State Council, P. R. China, Washington DCGoogle Scholar
  70. Wilson JP, Gallant JC (eds) (2000) Terrain analysis: principles and applications. Wiley, New YorkGoogle Scholar
  71. WPS (2014) Population of China (2014) World Population Statistics. Accessed 18 Sept 2014
  72. Xiao YT, Zhang JJ, Wu M et al (2001) Pollution of water resource and the safety of drinking water (Chinese). Resour Environ Yangtze Basin 10(1):51–59Google Scholar
  73. Xinhua (2006) China issues S&T development guidelines. Accessed 18 Sept 2014
  74. Yu Z, Pollard D, Cheng L (2006) On continental-scale hydrologic simulations with a coupled hydrologic model. J Hydrol 331:110–124CrossRefGoogle Scholar
  75. Yuan F, Kunstmann H, Yang C, Yu Z, Ren L, Fersch B, Xie Z (2009) Development of a coupled land-surface and hydrology model system for mesoscale hydrometeorological simulations. In: New Approaches to Hydrological Prediction in Data Sparse Regions, vol 333. IAHS Publ, pp 195–202Google Scholar
  76. Yue TX (2011) Surface modelling: high accuracy and high speed methods. CRC Press, New YorkCrossRefGoogle Scholar
  77. Zacharias S, Bogena H, Samaniego L, Mauder M, Fuß R, Pütz T, Frenzel M, Schwank M, Baessler C, Butterbach-Bahl K, Bens O, Borg E, Brauer A, Dietrich P, Hajnsek I, Helle G, Kiese R, Kunstmann H, Klotz S, Munch JC, Papen H, Priesack E, Schmid HP, Steinbrecher R, Rosenbaum U, Teutsch G, Vereecken H (2011) A network of terrestrial environmental observatories in Germany. Vadose Zone J 10(3):955–973CrossRefGoogle Scholar
  78. Zhang K (2014) Blue-green algae bloom in Taihu Lake: reflections on pollution and development. Chinese Research Perspectives Online. International Advisory Board Chinese Research Perspectives Online, BrillGoogle Scholar
  79. Zhang Y, Li GM (2014) Influence of south-to-north water diversion on major cones of depression in North China Plain. Environ Earth Sci 71:3845–3853CrossRefGoogle Scholar
  80. Zhang J, Tränckner J, Krebs P (2012) Spatial distribution and temporal accumulation of particulate-associated Cu, Zn and Cd on impervious urban surfaces. In: 9th IWA International Conference on Urban Drainage Modelling, Belgrade, SerbiaGoogle Scholar
  81. Zhang J, Tränckner J, Hua P, Krebs P (2013) Potential source contributions and risk assessment of size-fractionated polycyclic aromatic hydrocarbons (PAHs) on traffic roads. In: 7th International Conference on Sewer Processes and Networks, SheffieldGoogle Scholar
  82. Zhang J, Hua P, Kaeseberg T, Guo J, Krebs P (2014) A comprehensive approach to road-deposited sediment ecological risk assessment under a runoff pollution aspect. Paper presented at the 13th IWA International Conference on Urban Drainage, Sarawak, MalaysiaGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Cui Chen
    • 1
    Email author
  • Hilmar Börnick
    • 2
  • Qinghua Cai
    • 3
  • Xiaohu Dai
    • 4
  • Sonja C. Jähnig
    • 5
  • Yanlong Kong
    • 6
  • Peter Krebs
    • 2
  • Claudia Kuenzer
    • 7
  • Harald Kunstmann
    • 8
    • 9
  • Yang Liu
    • 2
  • Erik Nixdorf
    • 1
  • Zhonghe Pang
    • 6
  • Michael Rode
    • 1
  • Christoph Schueth
    • 10
  • Yonghui Song
    • 11
  • Tianxiang Yue
    • 12
  • Kuangxin Zhou
    • 13
  • Jin Zhang
    • 2
  • Olaf Kolditz
    • 1
    • 2
  1. 1.Helmholtz Centre for Environmental ResearchLeipzigGermany
  2. 2.Technische Universität DresdenDresdenGermany
  3. 3.State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of HydrobiologyChinese Academy of SciencesWuhanChina
  4. 4.Tongji UniversityShanghaiChina
  5. 5.Leibniz-Institute of Freshwater Ecology and Inland FisheriesBerlinGermany
  6. 6.Institute of Geology and GeophysicsChinese Academy of SciencesBeijingChina
  7. 7.German Aerospace Center, DLRWeßlingGermany
  8. 8.Karlsruhe Institute of Technology KITGarmisch-PartenkirchenGermany
  9. 9.Institute of GeographyUniversity of AugsburgAugsburgGermany
  10. 10.Institute for Applied GeosciencesTechnische Universität DarmstadtDarmstadtGermany
  11. 11.China Research Academy of Environmental SciencesBeijingChina
  12. 12.Institute of Geographical Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
  13. 13.Berlin Centre of Competence for WaterBerlinGermany

Personalised recommendations