Advertisement

Environmental Earth Sciences

, Volume 74, Issue 2, pp 1343–1352 | Cite as

Characteristic microbial communities in the continuous permafrost beside the bitumen in Qinghai-Tibetan Plateau

  • Nan JiangEmail author
  • Yang Li
  • Chenggang Zheng
  • Lijun Chen
  • Kai Wei
  • Jiao Feng
  • Jihui Tian
Original Article

Abstract

Although research on microorganisms in the global ecosystem has considerably increased, there is still incomplete understanding of the microbial communities in alpine permafrost due to the inaccessibility. In this study, the microbial composition and diversity in the continuous permafrost beside the bitumen in the Qiangtang basin (CPBQ) was investigated by 454 pyrosequencing. Among the bacterial communities, the phylum Actinobacteria was dominant, ranging from 33.42 to 48.04 %, followed by Proteobacteria and Acidobacteria. In addition to the three characteristic phyla, Planctomycetes, Chloroflexi, and Nitrospirae were also important in the CPBQ. Crenarchaeota, especially the ammonia-oxidizing archaea Soil Crenarchaeotic Group (SCG), was the main archaea in the CPBQ. Moreover, four fungal phyla, Ascomycota, Mucoromycotina, Chytridiomycota and Glomeromycota, were detected in the CPBQ. Mortierella, Fusarium, and Tetracladium were the main genera. On the average, the proportion of No_rank and unclassified sequences in bacteria and fungi were high at low taxonomic levels, which could extend the list of extreme environmental microbial candidate divisions. The demonstrations of the microbial communities in the CPBQ could provide key data to improve the knowledge of microbes in the terrestrial extreme environments.

Keywords

Microbial communities Permafrost Pyrosequencing Qinghai-Tibetan Plateau 

Notes

Acknowledgments

This work was supported by Natural Science Foundation of China (NSFC Grant #31100061).

Supplementary material

12665_2015_4124_MOESM1_ESM.docx (30 kb)
Supplementary material 1 (DOCX 29.5 kb)
12665_2015_4124_MOESM2_ESM.tif (7.2 mb)
Supplementary material 2 (TIFF 7,393 kb)
12665_2015_4124_MOESM3_ESM.tif (332 kb)
Supplementary material 3 (TIFF 331 kb)
12665_2015_4124_MOESM4_ESM.tif (350 kb)
Supplementary material 4 (TIFF 349 kb)

References

  1. Acosta-Martínez V, Dowd S, Sun Y, Allen V (2008) Tag-encoded pyrosequencing analysis of bacterial diversity in a single soil type as affected by management and land use. Soil Biol Biochem 40:2762–2770. doi: 10.1016/j.soilbio.2008.07.022 CrossRefGoogle Scholar
  2. Auguet JC, Barberan A, Casamayor EO (2010) Global ecological patterns in uncultured Archaea. ISME J 4:182–190. doi: 10.1038/ismej.2009.109 CrossRefGoogle Scholar
  3. Baker BJ, Sheik CS, Taylor CA, Jain S, Bhasi A, Cavalcoli JD, Dick GJ (2013) Community transcriptomic assembly reveals microbes that contribute to deep-sea carbon and nitrogen cycling. ISME J 7:1962–1973. doi: 10.1038/ismej.2013.85 CrossRefGoogle Scholar
  4. Bates ST, Berg-Lyons D, Caporaso JG, Walters WA, Knight R, Fierer N (2011) Examining the global distribution of dominant archaeal populations in soil. ISME J 5:908–917. doi: 10.1038/ismej.2010.171 CrossRefGoogle Scholar
  5. Breuker A, Stadler S, Schippers A (2013) Microbial community analysis of deeply buried marine sediments of the New Jersey shallow shelf (IODP Expedition 313). FEMS Microbiol Ecol 85:578–592. doi: 10.1111/1574-6941.12146 CrossRefGoogle Scholar
  6. Bridge PD, Newsham KK (2009) Soil fungal community composition at Mars Oasis, a southern maritime Antarctic site, assessed by PCR amplification and cloning. Fungal Ecol 2:66–74CrossRefGoogle Scholar
  7. Buckles LK, Villanueva L, Weijers JW, Verschuren D, Damste JS (2013) Linking isoprenoidal GDGT membrane lipid distributions with gene abundances of ammonia-oxidizing Thaumarchaeota and uncultured crenarchaeotal groups in the water column of a tropical lake (Lake Challa, East Africa). Environ Microbiol 15:2445–2462. doi: 10.1111/1462-2920.12118 CrossRefGoogle Scholar
  8. Chu H, Fierer N, Lauber CL, Caporaso JG, Knight R, Grogan P (2010) Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. Environ Microbiol 12:2998–3006. doi: 10.1111/j.1462-2920.2010.02277.x CrossRefGoogle Scholar
  9. Cui Z, Lai Q, Dong C, Shao Z (2008) Biodiversity of polycyclic aromatic hydrocarbon-degrading bacteria from deep sea sediments of the Middle Atlantic Ridge. Environ Microbiol 10:2138–2149. doi: 10.1111/j.1462-2920.2008.01637.x CrossRefGoogle Scholar
  10. Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 2011:941810. doi: 10.4061/2011/941810 Google Scholar
  11. Dedysh SN (2011) Cultivating uncultured bacteria from northern wetlands: knowledge gained and remaining gaps. Front Microbiol 2:184. doi: 10.3389/fmicb.2011.00184 CrossRefGoogle Scholar
  12. Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364CrossRefGoogle Scholar
  13. Frumkin H, Hess J, Vindigni S (2009) Energy and public health: the challenge of peak petroleum. Public Health Rep 124:5–19Google Scholar
  14. Gao B, Gupta RS (2005) Conserved indels in protein sequences that are characteristic of the phylum Actinobacteria. Int J Syst Evol Microbiol 55:2401–2412. doi: 10.1099/ijs.0.63785-0 CrossRefGoogle Scholar
  15. Gibson J et al (2014) Simultaneous assessment of the macrobiome and microbiome in a bulk sample of tropical arthropods through DNA metasystematics. Proc Natl Acad Sci USA. doi: 10.1073/pnas.1406468111 Google Scholar
  16. Goecks J, Nekrutenko A, Taylor J, Galaxy T (2010) Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 11:R86. doi: 10.1186/gb-2010-11-8-r86 CrossRefGoogle Scholar
  17. Hadziavdic K, Lekang K, Lanzen A, Jonassen I, Thompson EM, Troedsson C (2014) Characterization of the 18S rRNA gene for designing universal eukaryote specific primers. PLoS One 9:e87624. doi: 10.1371/journal.pone.0087624 CrossRefGoogle Scholar
  18. He JL, Wang J, Fu XG, Zheng CG, Chen YT (2012) Assessing the conditions favorable for the occurrence of gas hydrate in the Tuonamu area Qiangtang basin, Qinghai-Tibetan, China. Energ Convers Manage 53:11–18. doi: 10.1016/j.enconman.2011.08.012 CrossRefGoogle Scholar
  19. Ivanova AO, Dedysh SN (2012) Abundance, diversity, and depth distribution of planctomycetes in acidic northern wetlands. Front Microbiol 3:5. doi: 10.3389/fmicb.2012.00005 CrossRefGoogle Scholar
  20. Johnson RJ, Smith BE, Sutton PA, McGenity TJ, Rowland SJ, Whitby C (2011) Microbial biodegradation of aromatic alkanoic naphthenic acids is affected by the degree of alkyl side chain branching. ISME J 5:486–496. doi: 10.1038/ismej.2010.146 CrossRefGoogle Scholar
  21. Jones RT, Robeson MS, Lauber CL, Hamady M, Knight R, Fierer N (2009) A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J 3:442–453. doi: 10.1038/ismej.2008.127 CrossRefGoogle Scholar
  22. Kim M, Morrison M, Yu Z (2011) Evaluation of different partial 16S rRNA gene sequence regions for phylogenetic analysis of microbiomes. J Microbiol Methods 84:81–87. doi: 10.1016/j.mimet.2010.10.020 CrossRefGoogle Scholar
  23. Kochkina G et al (2012) Ancient fungi in Antarctic permafrost environments. FEMS Microbiol Ecol 82:501–509. doi: 10.1111/j.1574-6941.2012.01442.x CrossRefGoogle Scholar
  24. Kuffner M et al (2012) Effects of season and experimental warming on the bacterial community in a temperate mountain forest soil assessed by 16S rRNA gene pyrosequencing. FEMS Microbiol Ecol 82:551–562. doi: 10.1111/j.1574-6941.2012.01420.x CrossRefGoogle Scholar
  25. Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75:5111–5120. doi: 10.1128/AEM.00335-09 CrossRefGoogle Scholar
  26. Li Y, Wang C, Li Y, Ma C, Wang L, Peng S (2010) The Cretaceous tectonic event in the Qiangtang Basin and its implications for hydrocarbon accumulation. Petrol Sci 7:466–471. doi: 10.1007/s12182-010-0096-7 CrossRefGoogle Scholar
  27. Li X, Gai J, Cai X, Li X, Christie P, Zhang F, Zhang J (2014) Molecular diversity of arbuscular mycorrhizal fungi associated with two co-occurring perennial plant species on a Tibetan altitudinal gradient. Mycorrhiza 24:95–107. doi: 10.1007/s00572-013-0518-7 CrossRefGoogle Scholar
  28. Logares R et al (2013) Biogeography of bacterial communities exposed to progressive long-term environmental change. ISME J 7:937–948. doi: 10.1038/ismej.2012.168 CrossRefGoogle Scholar
  29. Margesin R (2009) Fungi in permafrost 16 doi: 10.1007/978-3-540-69371-0
  30. Margesin R, Miteva V (2011) Diversity and ecology of psychrophilic microorganisms. Res Microbiol 162:346–361. doi: 10.1016/j.resmic.2010.12.004 CrossRefGoogle Scholar
  31. Nicol GW, Leininger S, Schleper C, Prosser JI (2008) The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ Microbiol 10:2966–2978. doi: 10.1111/j.1462-2920.2008.01701.x CrossRefGoogle Scholar
  32. Offre P, Spang A, Schleper C (2013) Archaea in biogeochemical cycles Annu Rev Microbiol 67:437–457. doi: 10.1146/annurev-micro-092412-155614 CrossRefGoogle Scholar
  33. Ollivier J et al (2013) Bacterial community structure in soils of the Tibetan Plateau affected by discontinuous permafrost or seasonal freezing. Biol Fert Soils 50:555–559. doi: 10.1007/s00374-013-0869-4 CrossRefGoogle Scholar
  34. Prosser JI, Nicol GW (2008) Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment. Environ Microbiol 10:2931–2941. doi: 10.1111/j.1462-2920.2008.01775.x CrossRefGoogle Scholar
  35. Rousk J et al (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1340–1351. doi: 10.1038/ismej.2010.58 CrossRefGoogle Scholar
  36. Schidlowski M (2001) Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept. Precambrian Res 106:117–134. doi: 10.1016/S0301-9268(00)00128-5 CrossRefGoogle Scholar
  37. Schippers A, Kock D, Hoft C, Koweker G, Siegert M (2012) Quantification of microbial communities in subsurface marine sediments of the Black Sea and off Namibia. Front Microbiol 3. doi: 10.3389/Fmicb.2012.00016
  38. Silva CC et al (2013) Identification of genes and pathways related to phenol degradation in metagenomic libraries from petroleum refinery wastewater. PLoS ONE 8:e61811. doi: 10.1371/journal.pone.0061811 CrossRefGoogle Scholar
  39. Stan-Lotter H, Fendrihan S (2012) Adaption of microbial life to environmental extremes : novel research results and application. Springer, New YorkCrossRefGoogle Scholar
  40. Sun B, Wang F, Jiang YJ, Li Y, Dong ZX, Li ZP, Zhang XX (2014) A long- term field experiment of soil transplantation demonstrating the role of contemporary geographic separation in shaping soil microbial community structure. Ecol Evol 4:1073–1087. doi: 10.1002/Ece3.1006 CrossRefGoogle Scholar
  41. Tang YQ, Li Y, Zhao JY, Chi CQ, Huang LX, Dong HP, Wu XL (2012) Microbial communities in long-term, water-flooded petroleum reservoirs with different in situ temperatures in the Huabei Oilfield, China. PLoS One 7:e33535. doi: 10.1371/journal.pone.0033535 CrossRefGoogle Scholar
  42. Teske A, Sorensen KB (2008) Uncultured archaea in deep marine subsurface sediments: have we caught them all? ISME J 2:3–18. doi: 10.1038/ismej.2007.90 CrossRefGoogle Scholar
  43. Tischer K et al (2013) Microbial communities along biogeochemical gradients in a hydrocarbon-contaminated aquifer. Environ Microbiol 15:2603–2615. doi: 10.1111/1462-2920.12168 CrossRefGoogle Scholar
  44. Tripathi BM, Kim M, Lai-Hoe A, Shukor NA, Rahim RA, Go R, Adams JM (2013) pH dominates variation in tropical soil archaeal diversity and community structure. FEMS Microbiol Ecol 86:303–311. doi: 10.1111/1574-6941.12163 CrossRefGoogle Scholar
  45. Walker T, Adams AR (1958) Studies on soil organic matter: I. Influence of phosphorus content of parent materials on accumulations of carbon, nitrogen, sulfur, and organic phosphorus in grassland soils. Soil Sci 85:307–318CrossRefGoogle Scholar
  46. Wang C et al (2008) Constraints on the early uplift history of the Tibetan Plateau. Proc Natl Acad Sci USA 105:4987–4992. doi: 10.1073/pnas.0703595105 CrossRefGoogle Scholar
  47. Willerslev E et al (2004) Long-term persistence of bacterial DNA. Curr Biol 14:R9–10CrossRefGoogle Scholar
  48. Wong FK, Lacap DC, Lau MC, Aitchison JC, Cowan DA, Pointing SB (2010) Hypolithic microbial community of quartz pavement in the high-altitude tundra of central Tibet. Microb Ecol 60:730–739. doi: 10.1007/s00248-010-9653-2 CrossRefGoogle Scholar
  49. Xiong J et al (2012) Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau. Environ Microbiol 14:2457–2466. doi: 10.1111/j.1462-2920.2012.02799.x CrossRefGoogle Scholar
  50. Yu S, Li S, Tang Y, Wu X (2011) Succession of bacterial community along with the removal of heavy crude oil pollutants by multiple biostimulation treatments in the Yellow River Delta, China. J Environ Sci 23:1533–1543. doi: 10.1016/s1001-0742(10)60585-2 CrossRefGoogle Scholar
  51. Yuan Y, Si G, Wang J, Luo T, Zhang G (2014) Bacterial community in alpine grasslands along an altitudinal gradient on the Tibetan Plateau. FEMS Microbiol Ecol 87:121–132. doi: 10.1111/1574-6941.12197 CrossRefGoogle Scholar
  52. Zhalnina K, de Quadros PD, Camargo FA, Triplett EW (2012) Drivers of archaeal ammonia-oxidizing communities in soil. Front Microbiol 3:210. doi: 10.3389/fmicb.2012.00210 CrossRefGoogle Scholar
  53. Zhang XF, Zhao L, Xu SJ Jr, Liu YZ, Liu HY, Cheng GD (2013) Soil moisture effect on bacterial and fungal community in Beilu River (Tibetan Plateau) permafrost soils with different vegetation types. J Appl Microbiol 114:1054–1065. doi: 10.1111/jam.12106 CrossRefGoogle Scholar
  54. Zhang W, Wu XK, Liu GX, Dong ZB, Zhang GS, Chen T, Dyson PJ (2014) Tag-encoded pyrosequencing analysis of bacterial diversity within different alpine grassland ecosystems of the Qinghai-Tibet Plateau, China. Environ Earth Sci 72:779–786. doi: 10.1007/s12665-013-3001-z CrossRefGoogle Scholar
  55. Zheng Y et al (2014) Ammonia oxidizers and denitrifiers in response to reciprocal elevation translocation in an alpine meadow on the Tibetan Plateau. J Soil Sediment 14:1189–1199. doi: 10.1007/s11368-014-0867-7 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Nan Jiang
    • 1
  • Yang Li
    • 2
  • Chenggang Zheng
    • 3
  • Lijun Chen
    • 1
  • Kai Wei
    • 1
  • Jiao Feng
    • 1
  • Jihui Tian
    • 1
  1. 1.State Key Laboratory of Forest and Soil Ecology, Institute of Applied EcologyChinese Academy of SciencesShenyangChina
  2. 2.Tianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjinChina
  3. 3.Petroleum Exploration and Production Research Institute, SinopecBeijingChina

Personalised recommendations