Environmental Earth Sciences

, Volume 73, Issue 11, pp 7669–7677 | Cite as

Mechanochemical treatment and structural properties of lead adsorption on kaolinite (Rudovci, Serbia)

  • Snežana S. Nenadović
  • Ljiljana M. Kljajević
  • Miloš T. Nenadović
  • Miljana M. Mirković
  • Smilja B. Marković
  • Zlatko Lj. Rakočević
Original Article


In the present work, remediation of lead-containing solution using raw and modified kaolinite has been presented. The micro and nanostructure of samples has been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). Laser diffraction and scattering (LDS), was analyzed by particle size analyzer based on laser diffraction and particle size distribution (PSD) was done. The degree of metal adsorption was evaluated analyzing the Pb(II) contaminated samples by inductively coupled plasma atomic emission spectrometry (micro- and nanostructure on immobilization efficiency correlCP AES). The results show the impact of immobilization efficiency and ation between micro- and nanostructure. The thermodynamic data (ΔH°, ΔS°, ΔG°) are calculated from the temperature-dependent sorption isotherms. The results suggest sorption process of Pb(II) on kaolinite as spontaneous and endothermic.


Kaolinite Micro–nano structure AFM phase analysis SEM Particle size distribution 



This project was financially supported by the Serbian Ministry of Education and Science on projects 45005 and 45012.


  1. Al-Ghouti M, Khraisheh MA, Ahmad MN, Allen S (2005) Thermodynamic behaviour and the effect of temperature on the removal of dyes from aqueous solution using modified diatomite: a kinetic study. J Colloid Interface Sci 287(1):6–13CrossRefGoogle Scholar
  2. Bhattacharyya KG, Gupta SS (2008) Kaolinite and montmorillonite as adsorbents for Fe(III), Co(II) and Ni(II) in aqueous medium. Appl Clay Sci 40:1–9CrossRefGoogle Scholar
  3. Boldgrev VV, Avvakumov EG (1971) Mechanochemistry of inorganic solids. Russ Chem Rev 40:847–859CrossRefGoogle Scholar
  4. Butyagin PY (1971) Kinetics and nature of mechanochemical reactions. Russ Chem Rev 40:905–915CrossRefGoogle Scholar
  5. Goren R, Baykara T, Marsoglu M (2002) A study on the purification of diatomite in hydrochloric acid. Scand J Metall 31(2):115–119CrossRefGoogle Scholar
  6. James SR (1995) Principles of ceramics processing, 2nd edn. Wiley, New YorkGoogle Scholar
  7. Li Y, Xia B, Zhao Q, Liu F, Zhang P, Du Q, Wang D, Li D, Wang Z, Xia Y (2011) Removal of copper ions from aqueous solution by calcium alginate immobilized kaolin. J Environ Sci 23(3):404–411CrossRefGoogle Scholar
  8. Mart`ınez CE, Motto HL (2000) Solubility of lead, zinc and copper added to mineral soils. Environ Pollut 107:153–158CrossRefGoogle Scholar
  9. Miranda-Trevino JC, Coles CA (2003) Kaolinite properties, structure and influence of metal retention on pH. Appl Clay Sci 23(1):133–139CrossRefGoogle Scholar
  10. Montinaro S, Concas A, Pisu M, Cao G (2007) Remediation of heavy metals contaminated soils by ball milling. Chemosphere 67(4):631–639CrossRefGoogle Scholar
  11. Montinaro S, Concas A, Pisu M, Cao G (2008) Immobilization of heavy metals in contaminated soils through ball milling with and without additives. Chem Eng J 142:271–284CrossRefGoogle Scholar
  12. Mulas G, Loiselle S, Schiffini L, Cocco G (1997) The mechanochemical self-propagating reactions between hexachlorobenzene and calcium hydride. J Solid State Chem 129:263–270CrossRefGoogle Scholar
  13. Needleman HL, Bellinger DD (1991) The health effects of low level exposure to lead. Annu Rev Public Health 12:111–140CrossRefGoogle Scholar
  14. Nenadovic S, Nenadovic M, Kovacevic R, Matovic Lj, Matovic B, Jovanovic Z, Grbovic-Novakovic J (2009) Influence of diatomite microstructure on its adsorption capacity for Pb(II). Sci Sinter 41(3):309–317CrossRefGoogle Scholar
  15. Oonnittan A, Shrestha RA, Sillanpää M (2009) Removal of hexachlorobenzene from soil by electrokinetically enhanced chemical oxidation. J Hazard Mater 162:989–993CrossRefGoogle Scholar
  16. Paff SW, Bosilovich BE (1995) Use of lead reclamation in secondary lead smelters for the remediation of lead contaminated sites. J Hazard Mater 40:139–164CrossRefGoogle Scholar
  17. Pham TD, Shrestha RA, Sillanpää M (2009) Electrokinetic and ultrasonic treatment of kaoline contaminated by POPs. Sep Purif Technol 44:2410–2420Google Scholar
  18. Riedmüller G (1978) Neoformation and transformation of clay minerals in tectonic shear zones. Minerol Petrol 25:219–242Google Scholar
  19. Sheng G, Hu J, Wang X (2008) Sorption properties of Th(IV) on the raw diatomite—effects of contact time, pH, ionic strength and temperature. Appl Radiat Isot 66(10):1313–1320CrossRefGoogle Scholar
  20. Sljivic M, Smiciklas I, Pejanović S, Plecas I (2008) Comparative study of Cu2+ adsorption on a zeolite, a clay and a diatomite from Serbia. Appl Clay Sci 43(1):33–40CrossRefGoogle Scholar
  21. Suraj G, Iyer CSP, Rugmini S, Lalithambika M (1997) The effect of micronization on kaolinites and their sorption behaviour. Appl Clay Sci 12(1–2):111–130CrossRefGoogle Scholar
  22. Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46:1–184CrossRefGoogle Scholar
  23. Wang YM, Chen TC, Yeh KJ, Shue MF (2001) Stabilization of an elevated heavy metal contaminated site. J Hazard Mater B 88:63–74CrossRefGoogle Scholar
  24. Wang S, Nan Z, Li Y, Zhao Z (2009) The chemical bonding of copper ions on kaolin from Suzhou, China. Desalination 249:991–995CrossRefGoogle Scholar
  25. White RE (1987) Introduction to the principles of soil science, 2nd edn. Blackwell, BostonGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Snežana S. Nenadović
    • 1
  • Ljiljana M. Kljajević
    • 1
  • Miloš T. Nenadović
    • 2
  • Miljana M. Mirković
    • 1
  • Smilja B. Marković
    • 3
  • Zlatko Lj. Rakočević
    • 2
  1. 1.Laboratory for Materials Sciences, Institute of Nuclear Sciences VinčaUniversity of BelgradeBelgradeSerbia
  2. 2.Laboratory for Atomic Physics, Institute of Nuclear Sciences VinčaUniversity of BelgradeBelgradeSerbia
  3. 3.Institute of Technical Sciences of the Serbian Academy of Sciences and ArtsUniversity of BelgradeBelgradeSerbia

Personalised recommendations