Advertisement

Environmental Earth Sciences

, Volume 72, Issue 12, pp 4677–4687 | Cite as

Integrated water resources management under different hydrological, climatic and socio-economic conditions: results and lessons learned from a transdisciplinary IWRM project IWAS

  • J. Seegert
  • T. U. Berendonk
  • C. Bernhofer
  • F. Blumensaat
  • I. Dombrowsky
  • C. Fuehner
  • J. Grundmann
  • N. Hagemann
  • T. Kalbacher
  • F.-D. Kopinke
  • R. Liedl
  • M. Leidel
  • C. Lorz
  • F. Makeschin
  • D. Markova
  • S. Niemann
  • G. Röstel
  • J. Schanze
  • N. Scheifhacken
  • N. Schuetze
  • C. Siebert
  • C. Stefan
  • B. Strehlitz
  • G. Teutsch
  • C. Weigelt
  • H. Weiß
  • O. KolditzEmail author
  • D. Borchardt
  • P. Krebs
Thematic Issue

Abstract

The International Water Research Alliance Saxony (IWAS) is addressing the global challenges concerning water quality in the areas of drinking water and sanitation, agricultural irrigation and the quality of surface and ground waters, as well as developing specific ecosystem-relevant services to be implemented on an exemplary basis in selected model regions. Locations (model regions) have been selected in Eastern Europe (R1), Central and Southeast Asia (R2 and R3), the Middle East (R4) and Latin America (R5) that are representative international regions with respect to climate, land use and demographic change (Ibisch et al., Helmholtz Centre for Environmental Research—UFZ, Department of Aquatic Ecosystem analysis and management, 2013). The causes of water problems and the relevant boundary conditions vary from region to region (Borchardt and Ibisch, Integrated water resources management in a changing world : lessons learnt and innovative perspectives, pp 225, 2013). Mongolia and Vietnam were selected model regions in the first IWAS phase; the research was transferred and continued in one of the cross-cutting projects in IWAS II (Vietnam → capacity development) or in the frame of related project activities in Central Asia (R2 Mongolia, Karthe et al., Environ Earth Sci, doi: 10.1007/s12665-014-3789-1, 2014). The IWAS consortium exists on scientific institutions like the Technische Universität Dresden and the Helmholtz Centre for Environmental Research—UFZ, Leipzig, as well as partners from industry like the Stadtentwässerung Dresden GmbH (SE-DD), DREBERIS—Dresden consulting for international strategies, and itwh—institute for technical-scientific Hydrology, Hanover. This thematic issue compiles the most important scientific results of the second phase of the IWAS project. The project itself and findings of the first phase were already introduced in a previous special issue by Kalbus et al. (Environ Earth Sci 65:1363–1366, 2012). Main results: The IWAS project is structured by the model regions (R) as well as by cross-cutting activities scenario analysis (Q1), technology development (Q2), governance (Q3) and capacity development (Q4).

Keywords

Water resources management Climate change Socio-economy IWAS IWRM OpenGeoSys 

Notes

Acknowledgments

The scientific work presented in this Thematic Issue was supported by funding from the Federal Ministry for Education and Research (BMBF) in the framework of the project ‘‘IWAS—International Water Research Alliance Saxony” under following grants: Helmholtz-Zentrum für Umweltforschung—UFZ (02WM1165), Technische Universität Dresden (02WM1166), Stadtentwässerung Dresden (02WM1167), DREBERIS GmbH (02WM1168). We are very grateful for the support of Editorial Office of Environmental Earth Sciences at all stages of the preparation of this Thematic Issue. We would also like to thank the many reviewers for their excellent and voluntary contributions to improve the quality of the manuscripts of the IWAS II Thematic Issue.

References

  1. Abbt-Braun G, Boernick H, Brandão CCS, Cavalcanti CBG, Cavalcanti CP, Frimmel FH, Majewsky M, Steiniger B, Troester M, Worch E (2014) Water quality of tropical reservoirs in a changing world—the case of Lake Paranoá, Brasília, Brazil. In: Lorz, C et al (eds) Integrated water resource management in Brazil. IWA Publications (ISBN 978-1-78040-489-9)Google Scholar
  2. Barfus K, Bernhofer C (2014) Assessment of GCM performances for the Arabian Peninsula, Brazil, and Ukraine and indications of regional climate change. Environ Earth Sci. doi: 10.1007/s12665-014-3147-3 Google Scholar
  3. Baskyr I, Weiner B, Riedel G, Poerschmann J, Kopinke FD (2014) Wet oxidation of char–water-slurries from hydrothermal carbonization of paper and brewer’s spent grains. Fuel Process Technol 128:425–431CrossRefGoogle Scholar
  4. Bauer S, Beyer C, Dethlefsen F et al (2013) Impacts of the use of the geological subsurface for energy storage––an investigation concept. Environ Earth Sci 70(8):3935–3943. doi: 10.1007/s12665-013-2883-0 CrossRefGoogle Scholar
  5. Blumensaat F, Wolfram M, Krebs P (2012) Sewer model development under minimum data requirements. Environ Earth Sci 65(5):1427–1437. doi: 10.1007/s12665-011-1146-1 CrossRefGoogle Scholar
  6. Blumensaat F, Traenckner J, Helm B, Kroll S, Dirckx G, Krebs P (2013) An adaptive framework to differentiate water quality impacts on a multi-scale level. Water Sci Technol 67(2):424–432CrossRefGoogle Scholar
  7. Borchardt D, Ibisch R (eds) (2013) Integrated water resources management in a changing world: lessons learnt and innovative perspectives. IWA Publishing, London, p 225Google Scholar
  8. Borges APD, Barfus K, Weiss H, Bernhofer C (2014) Trend analysis and uncertainties of mean surface air temperature, precipitation and extreme indices in CMIP3 GCMs in Distrito Federal, Brazil. Environ Earth Sci. doi: 10.1007/s12665-014-3301-y
  9. Centler F, Shao H, Park C-H, de Biase C, Kolditz O, Thullner M (2010) GeoSysBRNS—a flexible multi-dimensional reactive transport model for simulating biogeochemical subsurface processes. Comput Geosci 36(3):397–405. doi: 10.1016/j.cageo.2009.06.009 CrossRefGoogle Scholar
  10. Da Anunciação YMT, Walde DHG, da Rocha RP (2014) Observed summer weather regimes and associated extreme precipitation over Distrito Federal, west-central Brazil. Environ Earth Sci. doi: 10.1007/s12665-014-3340-4 Google Scholar
  11. Dombrowsky I, Hagemann N, Houdret A (2014) The river basin as a new scale for water governance in transition countries? A comparative study of Mongolia and Ukraine. Environ Earth Sci. doi: 10.1007/s12665-014-3308-4 Google Scholar
  12. Ertel AM, Lupo A, Scheifhacken N et al (2012) Heavy load and high potential: anthropogenic pressures and their impacts on the water quality along a lowland river (Western Bug, Ukraine). Environ Earth Sci 65(5):1459–1473CrossRefGoogle Scholar
  13. Fischer S, Pluntke T, Pavlik D et al (2014) Hydrologic effects of climate change in a sub-basin of the Western Bug River. Environ Earth Sci, Western Ukraine. doi: 10.1007/s12665-014-3256-z Google Scholar
  14. Franz C, Abbt-Braun G, Lorz C, Roig HL, Makeschin F (2014a) Assessment and evaluation of metal contents in sediment and water samples within an urban watershed: an analysis of anthropogenic impacts on sediment and water quality in Central Brazil. Environ Earth Sci. doi: 10.1007/s12665-014-3454-8 Google Scholar
  15. Franz C, Makeschin F, Weiss H, Lorz C (2014b) Sediments in urban river basins: identification of sediment sources within the Lago Paranoá catchment, Brasilia DF, Brazil––using the fingerprint approach. Sci Total Environ 466–467:513–523CrossRefGoogle Scholar
  16. Fuehner C, Van Afferden M, Mueller RA (2012) The sewchar concept: an innovative tool for material flow management in sanitation systems. In: Integrated water resources management, Karlsruhe. Fraunhofer, pp 276–282 (ISBN:978-3-8396-0478-6)Google Scholar
  17. Gerner A, Schuetze N, Schmitz GH (2012) Portrayal of fuzzy recharge areas for water balance modelling––a case study in northern Oman. Adv Geosci. doi: 10.5194/adgeo-31-1-2012
  18. Gonçalves T-D, Fischer T, Graebe A et al (2013) Groundwater flow model of the Pipiripau watershed, Federal District of Brazil. Environ Earth Sci 69(2):617–631CrossRefGoogle Scholar
  19. Graebe A, Rink K, Fischer T et al (2013) Numerical analysis of the groundwater regime in the Western Dead Sea Escarpment. Environ Earth Sci 69(2):571–586. doi: 10.1007/s12665-012-1795-8 CrossRefGoogle Scholar
  20. Grundmann J, Schuetze N, Schmitz GH, Al-Shaqsi S (2012) Towards an integrated arid zone water management using simulation based optimisation. Environ Earth Sci 65(5):1381–1394. doi: 10.1007/s12665-011-1253-z CrossRefGoogle Scholar
  21. Grundmann J, Schuetze N, Lennartz F (2013) Sustainable management of a coupled groundwater–agriculture hydrosystem using multi-criteria simulation based optimisation. Water Sci Technol 67(3). doi: 10.2166/wst.2012.602
  22. Guenthert FW, Freitas V, Neder KD, Obermayer A, Faltermaier S, Tocha C (2014) Developing the urban water system towards using the Paranoá Lake in Brasília as receptor and water resource. In: Lorz C et al. (Hrsg) Integrated Water Resource Management in Brazil, IWA Publications (ISBN 978-1-78040-489-9)Google Scholar
  23. Hagemann N, Klauer B, Moynihan RM et al (2014) The role of institutional and legal constraints on river water quality monitoring in Ukraine. Environ Earth Sci. doi: 10.1007/s12665-014-3307-5 Google Scholar
  24. Hoefer R, Bakker F, Guenther N, Firmbach L, Roig H, Lorz C, Weiss H (2014) Chapter 5: urban structure types and their impact on water resources: a case study in the Distrito Federal of Brazil. In: Lorz C et al. (eds) Integrated water resource management in Brazil. IWA Publications (ISBN: 978-1-78040-489-9)Google Scholar
  25. Huenges E, Kohl T, Kolditz O, Bremer J, Scheck-Wenderoth M, Vienken T (2013) Geothermal energy systems: research perspective for domestic energy provision. Environ Earth Sci 70(8):3927–3933. doi: 10.1007/s12665-013-2881-2 CrossRefGoogle Scholar
  26. Ibisch R, Kirschke S, Staerz C, Borchardt D (eds) (2013) Integrated water resources management: from research to implementation. In: Helmholtz Centre for Environmental Research—UFZ, Department of Aquatic Ecosystem analysis and management, Brückstraße 3 a, D-39114 MagdeburgGoogle Scholar
  27. Kalbacher T, Delfs JO, Shao H et al (2012) The IWAS ToolBox: software coupling for an integrated water resources management. Environ Earth Sci 65(5):1367–1380. doi: 10.1007/s12665-011-1270-y CrossRefGoogle Scholar
  28. Kalbus E, Kalbacher T, Kolditz O et al (2012) IWAS–integrated water resources management under different hydrological, climatic and socio-economic conditions. Environ Earth Sci 65(5):1363–1366. doi: 10.1007/s12665-011 CrossRefGoogle Scholar
  29. Karthe D, Chalov S, Borchardt D (2014) Water resources and their management in Central Asia in the early 21st century: status, challenges and future prospects. Environ Earth Sci. doi: 10.1007/s12665-014-3789-1
  30. Kloss S, Grundmann J, Seidel SJ et al (2014) Investigation of deficit irrigation strategies combining SVAT-modeling, optimization and experiments. Environ Earth Sci. doi: 10.1007/s12665-014-3463-7 Google Scholar
  31. Koerner P, Pluntke T, Sachse A et al (2014) Inverse determination of groundwater inflow using water balance simulations. Environ Earth Sci. doi: 10.1007/s12665-014-3327-1 Google Scholar
  32. Kolditz O, Rink K, Shao HB et al (2012) International viewpoint and news: data and modelling platforms in environmental Earth sciences. Environ Earth Sci 66:1279–1284. doi: 10.1007/s12665-012-1661-8 CrossRefGoogle Scholar
  33. Kopinke FD, Hildebrand H, Koehler R, Baskyr I, Poerschmann J (2010) Verfahren und Reaktor zur hydrothermalen Karbonisierung von Biomassen im Tiefschacht-Reaktor und zur gleichzeitigen Nassoxidation der anfallenden Prozesswässer. German Patent No: 10 2010 062833Google Scholar
  34. Koschke L, Lorz C, Fuerst C, Lehmann T, Makeschin F (2014) Assessing hydrological and provisioning ecosystem services in a case study in Western Central Brazil. Ecol Process 3(2). doi: 10.1186/2192-1709-3-2
  35. Kuse B, Wummel J, Neder KD (2014) Capacity development as base element of integrated water resource management in Central Brazil. In: Lorz C et al. (eds) Integrated water resource management in Brazil. IWA Publications (ISBN: 978-1-78040-489-9)Google Scholar
  36. Leidel M, Niemann S, Hagemann N (2012) Capacity development as key factor for integrated water resources management (IWRM)—improving water management in the Western Bug River Basin, Ukraine. Environ Earth Sci 66(5):1415–1426. doi: 10.1007/s12665-011-1223-5 CrossRefGoogle Scholar
  37. Leidel M, Niemann S, Alemayehu Habte S et al (2013) International viewpoint and news IWRM education: e-learning module on integrated water resources management. Environ Earth Sci 68(2):609–613CrossRefGoogle Scholar
  38. Leidel M, Seegert J, Niemann S, Stefan C, Phan HM, Weigelt C, Grundmann J, Lennartz F, Bernhofer C (2014a) Fostering water management through capacity development–Lessons from the International Water Research Alliance Saxony (IWAS). In: Huelsmann S, Ardakanian R (2014) Proceedings of the special session “Societal Concerns and Capacity Development” at the Symposium of European freshwater sciences (SEFS 8). Dresden: UNU-FLORES (ISBN: 978-3-944863-08-5)Google Scholar
  39. Leidel M, Hagemann N, Seegert J, et al. (2014b) Supporting decisions in water management by exploring information and capacity gaps––experiences from an IWRM study in the Western Bug River Basin, Ukraine. Environ Earth Sci (accepted)Google Scholar
  40. Libra JA, Ro KS, Kammann C, Funke A, Berge ND, Neubauer Y, Titirici MM, Fuehner C, Bens O, Kern J, Emmerich KH (2012) Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 2(1):71–106CrossRefGoogle Scholar
  41. Lorz C, Abbt-Braun G, Bakker F, Borges P, Boernicke H, Frimmel F, Gaffron A, Hoefer R, Makeschin F, Neder K, Roig LH, Steiniger B, Strauch M, Worch E, Weiss H (2012) Challenges of an integrated water resource management for the Federal District of Brasília, Western Central Brazil climate, land use and water resources. Environ Earth Sci 65(5):1601–1611CrossRefGoogle Scholar
  42. Majewsky M, Cavalcanti CBG, Cavalcanti CP, Horn H, Frimmel FH, Abbt-Braun G (2014) Estimating the trend of micropollutants in lakes as decision-making support in IWRM: a case study in Lake Paranoá, Brazil. Environ Earth Sci. doi: 10.1007/s12665-014-3458-4.
  43. Oliveira V, Makeschin F, Sano E, Lorz C (2014) Physical and chemical analyses of bare soil sites in Western Central Brazil: a case study. Environ Earth Sci. doi: 10.1007/s12665-014-3103-2 Google Scholar
  44. Pavlik D, Soehl D, Pluntke T et al (2014) Climate change in the Western Bug river basin and the impact on future hydro-climatic conditions. Environ Earth Sci. doi: 10.1007/s12665-014-3068-1 Google Scholar
  45. Philipp A, Grundmann J (2013) An integrated modeling system for flash flood routing in ephemeral rivers under the influence of groundwater recharge dams. J Hydraul Eng 139(12). doi: 10.1061/(ASCE)HY.1943-7900.0000766
  46. Pluntke T, Pavlik D, Bernhofer C (2014) Reducing uncertainty in hydrological modelling in a data sparse region. Environ Earth Sci. doi: 10.1007/s12665-014-3252-3 Google Scholar
  47. Poerschmann J, Weiner B, Baskyr I (2013) Organic compounds in olive mill wastewater and in solutions resulting from hydrothermal carbonization of the waste water. Chemosphere 92:1472–1482CrossRefGoogle Scholar
  48. Poerschmann J, Baskyr I, Weiner B, Koehler R, Wedwitschka H, Kopinke FD (2014a) Hydrothermal carbonization of olive mill wastewater. Bioresour Technol 164:162–169CrossRefGoogle Scholar
  49. Poerschmann J, Weiner B, Wedwitschka H, Baskyr I, Koehler R, Kopinke FD (2014b) Characterization of biocoals and dissolved organic matter phases obtained upon hydrothermal carbonization of brewer’s spent grain. Bioresour Technol 164:162–169CrossRefGoogle Scholar
  50. Poerschmann J, Weiner B, Woszidlo S, Koehler R, Kopinke FD (2014c) Hydrothermal carbonization of poly(vinyl chloride). Chemosphere 119:682–689CrossRefGoogle Scholar
  51. Rink K, Kalbacher T, Kolditz O (2012) Visual data management for hydrological analysis. Environ Earth Sci 65(5):1395–1403. doi: 10.1007/s12665-011-1230-6 CrossRefGoogle Scholar
  52. Roediger T, Meier A, Siebert C, Koeniger F, Kallioras A, Forestier P, Fuest T, Schueth C, Rausch R, Al-Saud M, Dietrich P (2012) Identification of potential groundwater recharge using 3D-spatial soil moisture observations in the Ad-Dahna Desert, Kingdom of Saudi Arabia. In: Rausch R, Schueth C, Himmelsbach T (eds) Hydrogeology of arid environments: proceedings. Borntraeger, Stuttgart, pp 129–132Google Scholar
  53. Schanze J, Truemper J, Burmeister C, Pavlik D, Kruhlov I (2012) A methodology for dealing with regional change in integrated water resources management. Environ Earth Sci 65(5):1405–1414. doi: 10.1007/s12665-011-1311-6 CrossRefGoogle Scholar
  54. Scheck-Wenderoth M, Schmeisser D, Mutti M et al (2013) Geoenergy: new concepts for utilization of geo-reservoirs as potential energy sources. Environ Earth Sci 70(8):3427–3431. doi: 10.1007/s12665-013-2877-y CrossRefGoogle Scholar
  55. Scheifhacken Nicole, Haase Ulrike, Gram-Radu Lesya et al (2012) How to assess hydromorphology? A comparison of Ukrainian and German approaches. Environ Earth Sci 65(5):1483–1499CrossRefGoogle Scholar
  56. Schmidt D (2014) Untersuchungen zum Bindungsverhalten eines Protein A spezifischen Aptamers und seiner Anwendung zum Nachweis von Staphylococcus aureus. Bachelor Thesis. Helmholtz-Zentrum für Umweltforschung und Brandenburgische Technische Universität Cottbus-Senftenberg. Accessed 07 July 2014Google Scholar
  57. Schuetze N, Schmitz GH (2010) Occasion: a new planning tool for optimal climate change adaption strategies in irrigation. J Irrig Drain Engin. doi: 10.1061/(ASCE)IR.1943-4774.0000266.
  58. Shao H, Kolditz O, Kulik DA, Pfingsten W, Kosakowski G (2009) Reactive transport of multiple non-ideal solid solutions. Appl Geochem 24:1287–1300. doi: 10.1016/j.apgeochem.2009.04.001 CrossRefGoogle Scholar
  59. Siebert C, Roediger T, Rausch R, Doehler J, Michelsen N, Al-Saud M (2012) The upper mega aquifer system on the Arabian Peninsula—delineation of sub-aquifer interaction using hydrochemical and REE+Y pattern. In: Rausch R, Schueth C, Himmelsbach T (eds) Hydrogeology of arid environments. Borntraeger, Stuttgart, pp 154–158Google Scholar
  60. Siebert C, Roediger T, Schulz S, Horovitz M, Merz R, Friesen J, Dietrich P, Michelsen N, Kallioras A, Rausch R, Engelhardt I, Al-Saud M, Schueth C (2014) New tools for coherent information base for IWRM in arid regions: the upper mega aquifer system on the Arabian Peninsula. In: Borchardt D, Bogardi J, Ibisch R (eds) Integrated water resources management: concept, research and implementation. Springer, BerlinGoogle Scholar
  61. Stollberg R, Campos JEG, Borges WR, Gonçalves TD, Gaffron A, Weiss H (2014) Protection and exploitation of ground-water resources in Western Central Brazil. In: Lorz C et al. (Hrsg) Integrated water resource management in Brazil. IWA Publications (ISBN 978-1-78040-489-9).Google Scholar
  62. Stoltenburg R, Strehlitz B (2012) Dt. Patent DE102011006612.8, 31.03.2011, Int. Patent PCT/EP2012/055655, 29.03.2012.Google Scholar
  63. TACIS (2011) Transboundary water quality monitoring and assessment: Bug and Latorica/Uzh, Kyiv. In: Summary report and recommendations of the project. TACIS, KievGoogle Scholar
  64. Subagadis YH, Grundmann J, Schuetze N et al (2014) An integrated approach to conceptualise hydrological and socio-economic interaction for supporting management decisions of coupled groundwater-agricultural systems. Environ Earth Sci. doi: 10.1007/s12665-014-3238-1 Google Scholar
  65. Troeger V, Strehlitz B, Stoltenburg R, Schmieder S, Sonntag F (2013) A12-Charakterisierung von protein A-spezifischen DNA-Aptameren mittels SPR. 11. Dresdner Sensor-Symposium (09.12.2013–11.12.2013) Tagungsband, pp 178–182Google Scholar
  66. Wahren FT, Tarasiuk M, Mykhnovych A et al (2012) Estimation of spatially distributed soil information: dealing with data shortages in the Western Bug basin Ukraine. Environ Earth Sci 65(5):1501–1510CrossRefGoogle Scholar
  67. Walther M, Bilke L, Delfs J-O et al (2014) Assessing the saltwater remediation potential of a three-dimensional, heterogeneous, coastal aquifer system. Environ Earth Sci 72:3827–3837. doi: 10.1007/s12665-014-3253-2 CrossRefGoogle Scholar
  68. Weiner B, Poerschmann J, Wedwitschka H, Koehler R, Kopinke FD (2014) Influence of process water reuse on the hydrothermal carbonization of paper. ACS Sustain Chem Eng 2:2165–2171CrossRefGoogle Scholar
  69. Werisch S, Grundmann J, Al-Dhuhli H, Algharibi E, Lennartz F (2014) Multiobjective parameter estimation of hydraulic properties for a sandy soil in Oman. Environ Earth Sci. doi: 10.1007/s12665-014-3537-6 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • J. Seegert
    • 1
  • T. U. Berendonk
    • 1
  • C. Bernhofer
    • 1
  • F. Blumensaat
    • 3
  • I. Dombrowsky
    • 4
  • C. Fuehner
    • 2
  • J. Grundmann
    • 1
  • N. Hagemann
    • 2
  • T. Kalbacher
    • 2
  • F.-D. Kopinke
    • 2
  • R. Liedl
    • 1
  • M. Leidel
    • 1
  • C. Lorz
    • 5
  • F. Makeschin
    • 1
  • D. Markova
    • 2
  • S. Niemann
    • 2
  • G. Röstel
    • 6
  • J. Schanze
    • 7
  • N. Scheifhacken
    • 1
  • N. Schuetze
    • 1
  • C. Siebert
    • 2
  • C. Stefan
    • 1
  • B. Strehlitz
    • 2
  • G. Teutsch
    • 2
  • C. Weigelt
    • 8
  • H. Weiß
    • 2
  • O. Kolditz
    • 1
    • 2
    Email author
  • D. Borchardt
    • 1
    • 2
  • P. Krebs
    • 1
  1. 1.Technische UniversitätDresdenGermany
  2. 2.Helmholtz Centre for Environmental Research UFZLeipzigGermany
  3. 3.Eawag: Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
  4. 4.German Development InstituteBonnGermany
  5. 5.Hochschule Weihenstephan-Triesdorf, University of Applied SciencesFreisingGermany
  6. 6.StadtentwässerungDresdenGermany
  7. 7.Leibniz Institute of Ecological Urban and Regional DevelopmentDresdenGermany
  8. 8.DREBERIS GmbH – Strategy Consultants of DresdenDresdenGermany

Personalised recommendations