Environmental Earth Sciences

, Volume 73, Issue 10, pp 6387–6415 | Cite as

Groundwater vulnerability assessment of a coastal aquifer system at River Nestos eastern Delta, Greece

  • R. Pedreira
  • A. KalliorasEmail author
  • F. Pliakas
  • I. Gkiougkis
  • C. Schuth
Original Article


Processes such as urbanization, agricultural development and industrialization have led to increasing demand of groundwater resources resulting in pollution threats to groundwater in different ways, either as contaminant loads on the ground surface, or as seawater intrusion due to overexploitation of wells in the coastal zone. Two groundwater vulnerability indices are applied in this paper to assess the potential risk of groundwater contamination in the eastern delta of Nestos River, Greece. DRASTIC model is used in this paper to evaluate the groundwater vulnerability of the area with focus on agrochemical contaminants, more especially on nitrate pollution, since the region is highly cultivated. Additionally, GALDIT index is also applied to assess the vulnerability of the freshwater aquifer to seawater intrusion, as the extensive pumping of the coastal wells has led to this phenomenon. The vulnerability assessment showed that the study area experiences low to moderate groundwater vulnerability to agrochemical contaminants, as well as moderate to high vulnerability to seawater intrusion. The use of GIS for both vulnerability indices was found effective for the evaluation of each method in comparison to real field data.


DRASTIC GALDIT Vulnerability index Coastal hydrogeology Groundwater pollution Seawater intrusion Coastal aquifer management 


  1. Akhavan S, Mousavi S-F, Abedi-Koupai J, Abbaspour KC (2011) Conditioning DRASTIC model to simulate nitrate pollution case study: Hamadan-Bahar plain. Environ Earth Sci 63:1155–1167. doi: 10.1007/s12665-010-0790-1 CrossRefGoogle Scholar
  2. Al-Hanbali A, Kondoh A (2008) Groundwater vulnerability assessment and evaluation of human activity impact (HAI) within the Dead Sea groundwater basin Jordan. Hydrol J 16:499–510. doi: 10.1007/s10040-008-0280-7 Google Scholar
  3. Aller L, Bennett T, Lehr JH, Petty RJ, Hackett G (1987) DRASTIC: a standardized system for evaluating groundwater pollution potential using hydrogeologic settings. US EPA Report 600/2-87/035, Robert S. Kerr Environmental Research Laboratory, Ada, OKGoogle Scholar
  4. Almasri MN (2008) Assessment of intrinsic vulnerability to contamination for Gaza coastal aquifer, Palestine. J Environ Manage 88:577–593. doi: 10.1016/j.jenvman.2007.01.022 CrossRefGoogle Scholar
  5. Al-Zabet T (2002) Evaluation of aquifer vulnerability to contamination potential using the DRASTIC method. Environ Geol 43:203–208. doi: 10.1007/s00254-002-0645-5 CrossRefGoogle Scholar
  6. Baalousha H (2006) Vulnerability assessment of the Gaza Strip, Palestine using DRASTIC. Environ Geol 50:405–414. doi: 10.1007/s00254-006-0219-z CrossRefGoogle Scholar
  7. Bukowski P, Bromek T, Augustyniak I (2006) Using the DRASTIC system to assess the vulnerability of groundwater to pollution in Mined areas of the Upper Silesian Coal Basin. Mine Water Environ 25:15–22CrossRefGoogle Scholar
  8. Chachadi AG (2005) Seawater intrusion mapping using modified GALDIT indicator model—Case study in Goa. Jalvigyan Sameeksha 20:29–45Google Scholar
  9. Chachadi AG, Lobo Ferreira JP (2001) Seawater intrusion vulnerability mapping of aquifers using the GALDIT method. Coastin—A Coastal Policy Res Newsl 4:7–9Google Scholar
  10. Chachadi AG, Lobo Ferreira JP, Noronha L, Choudri BS (2002) Assessing the impact of sea-level rise on salt water intrusion in coastal aquifers using GALDIT model. Coastin—A Coastal Policy Res Newsl 7:27–32Google Scholar
  11. Denny SC, Allen DM, Journeay JM (2007) DRASTIC-Fm: a modified vulnerability mapping method for structurally controlled aquifers in the southern Gulf Islands, British Columbia, Canada. Hydrogeol J 15:483–493. doi: 10.1007/s10040-006-0102-8 CrossRefGoogle Scholar
  12. Ehteshami M, Peralta RC, Eisele H, Deer H, Tindall T (1991) Assessing pesticide contamination to groundwater: a rapid approach. Groundwater 29(6):862–868CrossRefGoogle Scholar
  13. El Naqa A (2004) Aquifer vulnerability assessment using the DRASTIC model at Russeifa landfill, northeast Jordan. Environ Geol 47:51–62. doi: 10.1007/s00254-004-1126-9 CrossRefGoogle Scholar
  14. Ettazarini S (2006) Groundwater pollution risk mapping for the Eocene aquifer of the Oum Er-Rabia basin, Morocco. Environ Geol 51:341–347. doi: 10.1007/s00254-006-0330-1 CrossRefGoogle Scholar
  15. Ettazarini S, El Mahmouhi N (2004) Vulnerability mapping of the Turonian limestone aquifer in the Phosphates Plateau (Morocco). Environ Geol 46:113–177. doi: 10.1007/s00254-004-1022-3 Google Scholar
  16. Fritch TG, McKnight CL, Yelderman JC Jr (2000) Environmental auditing: an aquifer vulnerability assessment of the paluxy aquifer, Central Texas, USA, using GIS and a Modified DRASTIC approach. Environ Manage 25(3):337–345. doi: 10.1007/s002679910026 CrossRefGoogle Scholar
  17. Gkiougkis I, Mwila G, Pliakas F, Kallioras A, Diamantis I (2010) Hydrogeological assessment of groundwater degradation at the eastern Nestos River Delta, N.E. Greece. In: 12th International Conference of the Geological Society of Greece, Patras, Greece, 19–22/5/2010, 4, 1697–1706Google Scholar
  18. Gkiougkis I, Tzevelekis T, Pliakas F, Diamantis I, Pechtelidis A (2011) Geophysical research of groundwater degradation at the eastern Nestos River Delta, NE Greece. In: Lambrakis N, Stournaras G, Katsanou K (eds) Advances in the research of aquatic environment, environmental earth sciences, Springer, vol 1, ISBN: 978-3-642-19901-1, p 259–266Google Scholar
  19. Gkiougkis I, Kallioras A, Pliakas F, Pechtelidis A, Diamantis V, Diamantis I, Ziogas A, Dafnis I (2014) Assessment of soil salinization at the eastern Nestos River Delta, N.E Greece. CATENA. doi: 10.1016/j.catena.2014.06.024 Google Scholar
  20. Hellenic Army Geographical Service, HAGS (1970) Topographical map of Avdera, 1:50.000, Edition HAGSGoogle Scholar
  21. Hentati I, Zairi M, Dhia HB (2010) A statistical and geographical information system analysis for groundwater intrinsic vulnerability: a validated case study from Sfax-Agareb, Tunisia. Water Environ J 25:400–411. doi: 10.1111/j.1747-6593.2010.00235.x CrossRefGoogle Scholar
  22. Institute of Geology and Mineral Exploration, IGME (1980) Geological map of Greece, Avdera-Mesi sheet, 1:50.000, Department of Geological maps of IGMEGoogle Scholar
  23. Jamrah A, Al-Futaisi A, Rajmohan N, Al-Yaroubi S (2007) Assessment of groundwater vulnerability in the coastal region of Oman using DRASTIC index method in GIS environment. Environ Monit Assess 147(1–3):125–138. doi: 10.1007/s10661-007-0104-6 Google Scholar
  24. Johansson PO, Scharp C, Alveteg T, Choza A (1999) Framework for groundwater protection—the managua groundwater system as an example. Groundwater 37(2):204–213CrossRefGoogle Scholar
  25. Kalinski RJ, Kelly WE, Bogardi I, Ehrman RL, Yamamoto PD (1994) Correlation between DRASTIC vulnerabilities and Incidents of VOC contamination of Municipal wells in Nebraska. Groundwater 32(1):31–34CrossRefGoogle Scholar
  26. Kallioras A, Pliakas F, Skias S, Gkiougkis I (2011) Groundwater vulnerability assessment at SW Rhodope aquifer system in NE Greece. Advances in the research of aquatic environment, environmental earth sciences, Springer, vol 2, ISBN: 978-3-642-24075-1, p 351–358Google Scholar
  27. Kalyana Sundaram VL, Dinesh G, Ravikumar G, Govindarajalu D (2008) Vulnerability assessment of seawater intrusion and effect of artificial recharge in Pondicherry coastal region using GIS. Indian J Sci Technol 1(7):1–7Google Scholar
  28. Lobo Ferreira JP, Chachadi AG, Diamantino C, Henriques MJ (2005) Assessing aquifer vulnerability to seawater intrusion using GALDIT method: Part 1 application to the portuguese aquifer of Monte Gordo. Fouth Inter-Celtic Colloquium on Hydrogeology and Management of Water Resources, PortugalGoogle Scholar
  29. Ludlow D, Falconi M, Carmichael L, Croft N, Di Leginio M, Fumanti F, Sheppard A, Smith N (2013) Land planning and soil evaluation instruments in EEA Member and Cooperating Countries (with inputs from Eionet NRC Land Use and Spatial Planning). Final Report for EEA from ETC/SIA (EEA project managers: G. Louwagie and G. Dige) Google Scholar
  30. Mahesha A, Vyshali U, Lathashri A, Ramesh H (2012) Parameter estimation and vulnerability assessment of coastal unconfined aquifer to saltwater intrusion. J Hydrol Eng (ASCE) 17:933–943CrossRefGoogle Scholar
  31. Metni M, El-Fadel M, Sadek S, Kayal R, El Khoury DL (2004) Groundwater resources in Lebanon: a vulnerability assessment. Int J Water Resour Dev 20(4):475–491. doi: 10.1080/07900620412331319135 CrossRefGoogle Scholar
  32. Mimi ZA, Assi A (2009) Intrinsic vulnerability, hazard and risk mapping for karst aquifers: a case study. J Hydrol 364:298–310. doi: 10.1016/j.jhydrol.2008.11.008 CrossRefGoogle Scholar
  33. Mishima Y, Takada M, Kitagawa R (2010) Evaluation of intrinsic vulnerability to nitrate contamination of groundwater: appropriate fertilizer application management. Environ Earth Sci 63(3):571–580. doi: 10.1007/s12665-010-0725-x CrossRefGoogle Scholar
  34. Monteiro AB, Freire PKC, Barbosa GF, Cabral JJSP, Silva SR (2008) DRASTIC: Vulnerabilidade do Aquïfero Barreiras nos bairros de Ibura e Jordão–Recife–Pernambuco. XV Congresso Brasileiro de Águas SubterrâneasGoogle Scholar
  35. Neshat A, Pradhan B, Pirasteh S, Shafri HZM (2014) Estimating groundwater vulnerability to pollution using a modified DRASTIC model in the Kerman agricultural area, Iran. Environ Earth Sci 71:3119–3131. doi: 10.1007/s12665-013-2690-7 CrossRefGoogle Scholar
  36. Panagopoulos GP, Antonakos AK, Lambrakis NJ (2006) Optimization of the DRASTIC method for groundwater vulnerability assessment via the use of simple statistical methods and GIS. Hydrogeol J 14:894–911CrossRefGoogle Scholar
  37. Pathak DR, Hiratsuka A, Awata I, Chen L (2008) Groundwater vulnerability assessment in shallow aquifer of Kathmandu Valley using GIS-based DRASTIC model. Environ Geol 57(7):1569–1578. doi: 10.1007/s00254-008-1432-8 CrossRefGoogle Scholar
  38. Pliakas F, Diamantis I, Petalas C (2001) Saline water intrusion and groundwater artificial recharge in east delta of Nestos River. Proceedings of the 7th International Conference on Environmental Science and Technology, University of the Aegean, Dept. of Environmental Studies, and Global Nest, Ermoupolis, Syros, Greece, 3–6/9/2001, vol 2, p 719–726Google Scholar
  39. Recinos N, Kallioras A, Pliakas F, Schuth C (2014) Application of GALDIT index to assess the intrinsic vulnerability to seawater intrusion of coastal granular aquifers. Environ Earth Sci. doi: 10.1007/s12665-014-3452-x Google Scholar
  40. Rosen L (1994) A study of the DRASTIC methodology with emphasis on Swedish conditions. Groundwater 32(2):278–285CrossRefGoogle Scholar
  41. Saidi S, Bouri S, Dhia HB (2013) Groundwater management based on GIS techniques, chemical indicators and vulnerability to seawater intrusion modelling: application to the Mahdia-Ksour Essaf aquifer, Tunisia. Environ Earth Sci 70:1551–1568. doi: 10.1007/s12665-013-2241-2 CrossRefGoogle Scholar
  42. Sakkas I, Diamantis I, Pliakas F (1998) Groundwater artificial recharge study of Xanthi—Rhodope aquifers (in Thrace, Greece). Greek Ministry of Agriculture Research Project, Final Report. Sections of Geotechnical Engineering and Hydraulics of the Civil Engineering Department of Democritus University of Thrace, Xanthi, Greece, (in Greek)Google Scholar
  43. Sener E, Sener S, Davraz A (2009) Assessment of aquifer vulnerability based on GIS and DRASTIC methods: a case study of the Senirkent-Uluborlu Basin (Isparta, Turkey). Hydro-geology J 17:2023–2035Google Scholar
  44. Shahid S (2000) A study of groundwater pollution vulnerability using DRASTIC/GIS, West Bengal, India. J Environ Hydrol 8(1):1–9Google Scholar
  45. Shetkar RV, Mahesha A (2011) Tropical, seasonal river basin development: hydrogeological analysis. J Hydrol Eng (ASCE) 16:280–291CrossRefGoogle Scholar
  46. Sophiya MS, Syed TH (2013) Assessment of vulnerability to seawater intrusion and potential remediation measures for coastal aquifers: a case study from eastern India. Environ Earth Sci 70(3):1197–1209. doi: 10.1007/s12665-012-2206-x CrossRefGoogle Scholar
  47. Thirumalaivasan D, Karmegam M, Venugopal K (2003) AHP-DRASTIC: software for specific aquifer vulnerability assessment using DRASTIC model and GIS. Environ Model Softw 18:645–656. doi: 10.1016/s1364-8152(03)00051-3 CrossRefGoogle Scholar
  48. Tilahun K, Merkel BJ (2010) Assessment of groundwater vulnerability to pollution in Dire Dawa, Ethiopia using DRASTIC. Environ Earth Sci 59:1485–1496. doi: 10.1007/s12665-009-0134-1 CrossRefGoogle Scholar
  49. Voudouris K, Mandilaras D (2004) Evaluation of groundwater vulnerability using the drastic method: case study of alluvial aquifer of Glafkos Basin, Achaia. Hydrotech J Hellenic Hydrotech Assoc 14:17–30Google Scholar
  50. Wen X, Wu J, Si J (2008) A GIS- based DRASTIC model for assessing shallow groundwater vulnerability in the Zhangye Basin, northwestern. China Environ Geol 57(6):1435–1442. doi: 10.1007/s00254-008-1421-y CrossRefGoogle Scholar
  51. Xeidakis G, Georgoulas A, Kotsovinos N, Delimani P, Varaggouli E (2010) Environmental degradation of the coastal zone of the west part of Nestos River delta, N. Greece. In: 12th International Conference of the Geological Society of Greece, Patras, Greece, 19–22/5/2010, Bulletin of the Geological Society of Greece, vol. 2, p 1074–1085Google Scholar
  52. Yin L, Zhang E, Wang X, Wenninger J, Dong J, Guo L, Huang J (2013) A GIS-based DRASTIC model for assessing groundwater vulnerability in the Ordos Plateau, China. Environ Earth Sci 69:171–185. doi: 10.1007/s12665-012-1945-z CrossRefGoogle Scholar
  53. Yogesh YYA (2005) Salinity mapping in coastal area using GIS and remote sensing. Master Thesis submitted to the International Institute for Geo-information Science and Earth Observation (ITC), Enschede, The Netherlands and to the Indian Institute of Remote Sensing, National Remote Sensing Agency (NRSA), Department of Space, India, p 65Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • R. Pedreira
    • 1
  • A. Kallioras
    • 2
    Email author
  • F. Pliakas
    • 3
  • I. Gkiougkis
    • 3
  • C. Schuth
    • 1
  1. 1.Institute of Applied GeosciencesTechnical University of DarmstadtDarmstadtGermany
  2. 2.School of Mining and Metallurgical EngineeringNational Technical University of AthensAthensGreece
  3. 3.Department of Civil EngineeringDemocritus University of ThraceXanthiGreece

Personalised recommendations