Advertisement

Environmental Earth Sciences

, Volume 73, Issue 10, pp 6323–6339 | Cite as

Rock magnetism in two loess–paleosol sequences in Córdoba, Argentina

  • S. RouzautEmail author
  • M. J. Orgeira
  • C. Vásquez
  • R. Ayala
  • G. L. Argüello
  • A. Tauber
  • R. Tófalo
  • L. Mansilla
  • J. Sanabria
Original Article

Abstract

This work presents new rock magnetic results along two loess–paleosol profiles in nearby locations in Argentina. The main objective of this study is to compare the magnetic signals and mineral content of two profiles and determine if the climate during Marine Isotope Stage 5 (MIS 5) and MIS 3 were similar to the present one. The two profiles are located in two different geomorphological settings, with effects on the water saturation characteristics and seasonality. Selected samples taken at these profiles were analyzed using laboratory procedures and environmental magnetism parameters to determine the climatic influence during the Late Pleistocene. Despite their proximity there are several differences between both profiles, such as their depth and geomorphological positions among others. The results of these analyses led to the following conclusions: climate conditions during MIS 5 were very similar to those of the present conditions. The hypothesis for this area suggests a slight increase in the magnetic signal associated with the generation of small amounts of magnetite and preservation of detrital magnetite and titano-magnetite. The results in this paper show a slight gain in the buried soils of Córdoba that would confirm the hypothesis.

Keywords

Rock magnetism MIS 5 Mineralogy Geomorphology 

Notes

Acknowledgments

This work was funded by projects Agencia PICT 0382/07 and PIP 747/10. Geologist Pablo Eveling’s collaboration in the field work was vital to obtaining the present results. We also would like to thank to the anonymous referees for their suggestions which help us to improve our paper.

References

  1. Argüello GL, Dasso CM, Sanabria JA (2006) Effects of intense rainfalls and their recurrence: case study in Corralito ravine, Córdoba Province, Argentina. Q Int 158:140–146CrossRefGoogle Scholar
  2. Argüello GL, Dohrmann R, Mansilla L (2012) Loess of Córdoba (Argentine) Central Plain, present state of knowledge and new results of research. In: Rossi AE, Miranda LS (eds) Capitulo en el libro Argentina: Educational, Geographical and Cultural Issues. Nova Science Pub Incorporated, New York, pp 1–49Google Scholar
  3. Banerjee SK, Hunt C (1993) Separation of local signals from the regional paleomonsoon record of the Chinese loess plateau: a rock-magnetic approach. Geophys Res Lett 20(9):843–846CrossRefGoogle Scholar
  4. Bidegain JC, van Velzen AJ, Rico Y (2001) Parámetros magnéticos en una secuencia de loess y paleosuelos del Cenozoico tardío en la cantera de Gorina, La Plata: su relevancia en el estudio de los cambios paleoclimáticos y paleoambientales. Revista de la Asociación Geológica Argentina 56(4):503–516Google Scholar
  5. Bidegain JC, Evans ME, van Velzen AJ (2005) A magnetoclimatological investigation of Pampean loess, Argentina. Geophys J Inter 160:55–62CrossRefGoogle Scholar
  6. Bloom A (1990) Some questions about the Pampean loess. In: Zárate M (ed) Properties, chronology and paleoclimatic significance of loess. International Symposium on Loess, Mar del Plata, pp 29–31Google Scholar
  7. Boyle J, Dearing J, Blundell A, Hannam J (2010) Testing competing hypotheses for soil magnetic susceptibility using a new chemical kinetic model. Geology 38(12):1059–1062CrossRefGoogle Scholar
  8. Capitanelli R (1979) Geomorfología. In: Vázquez JB (ed) Geografía Física de Córdoba. Editorial Boldt, Buenos Aires, pp 213–296Google Scholar
  9. Clapperton C (1993) Quaternary geology and geomorphology of South America. Elsevier, ScotlandGoogle Scholar
  10. Comité Argentino de Estratigrafía (CADE) (1992) Código Argentino de Estratigrafía. Asociación Geológica Argentina, Serie B, Didáctica y Complementaria 20:1–64Google Scholar
  11. Dearing JA (1994) Environmental magnetic susceptibility. Using the Bartington MS2 system. Chi Publishing, EnglandGoogle Scholar
  12. Degiovanni S, Cantú M (1997) Neotectonic activity in the La Cruz-Gigena depression, Córdoba, Argentina. Suplementi di Geografi y Física e Dinamica Quaternaria. Fourth International conference on Geomorphology. Bologna III 1:142–143Google Scholar
  13. Dorronsoro C, Aguilar J (1988) El proceso de iluviación de arcilla. Anales de Edafología y Agrobiología XLVII:310–350Google Scholar
  14. Dunlop DJ (2002) Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc). Theoretical curves and tests using titanomagnetite data. J Geophys Res 107(B3):1029–2001Google Scholar
  15. Dunlop D, Özdemir Ö (1997) Rock magnetism: fundamentals and frontiers. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  16. Egli R, Lowrie W (2002) Anhysteretic remanent magnetization of fine magnetic particles. J Geophys Res 107:10–21Google Scholar
  17. Etchevehere P (1976) Normas de Reconocimiento de Suelos. INTA. Departamento de Suelos. Public. (152), Castelar, Buenos AiresGoogle Scholar
  18. Evans ME, Heller F (2003) Environmental magnetism, principles and applications of enviromagnetics. Academic Press, San DiegoGoogle Scholar
  19. Florindo F, Roberts AP, Palmer M (2003) Magnetite dissolution in siliceous sediments. Geochem Geophys Geosyst. doi: 10.1029/2003GC000516 Google Scholar
  20. Frechen M, Seifert B, Sanabria JA, Argüello GL (2009) Chronology of Late Pleistocene pampa loess from the Córdoba area in Argentina. J Q Sci Rev 23:1–12Google Scholar
  21. Frenguelli J (1955) Loess y limos pampeanos. Serie Técnica y Didáctica No 7. Reimpresión. Universidad Nacional de La Plata, La PlataGoogle Scholar
  22. Gale SJ, Hoare PG (1992) Quaternary sediments: petrographic methods for the study of unlithified rocks. Belhaven Press, LondonGoogle Scholar
  23. Heller F, Evans ME (1995) Loess magnetism. Rev Geophys 33:211–240CrossRefGoogle Scholar
  24. Heller F, Shen CD, Beer J (1993) Quantitative estimates of pedogenic ferromagnetic mineral formation in Chinese loess and paleoclimatic implications. Earth Planet Sci Lett 114:385–390CrossRefGoogle Scholar
  25. Hunt C, Moskowitz B, Banerjee S (1995) Magnetic properties of rocks and minerals. In: Ahrens TJ (ed) Rock physics and phase relations: a handbook of physical constants, vol 3. American Geophysical Union, Washington, DC, pp 189–204Google Scholar
  26. Imbellone PA, Giménez JE, Cumba A (2005) Suelos con “fragipán” de la Pampa arenosa. Actas XVI Congreso Geológico Argentino, pp 65–72Google Scholar
  27. Imbellone PA, Giménez JE, Panigatti JL (2010) Suelos de la Región Pampeana: Procesos de formación. Ed. INTAGoogle Scholar
  28. Iriondo M (1990) The upper Holocene dry climate in the Argentine plains Quaternary of South America, vol 7. Balkena Publ., RotterdamGoogle Scholar
  29. Iriondo M (1997) Models of deposition of loess and loessoids in the upper Quaternary of South America. J S Am Earth Sci 10(1):71–79CrossRefGoogle Scholar
  30. Iriondo M, Kröhling D (1995) El Sistema Eólico Pampeano 5(1):1–68Google Scholar
  31. Karlsson A (1990) Aspectos del material piroclástico de los loess de Córdoba, Argentina. Actas del XI Congreso Geológico Argentino, Tomo I:434–438Google Scholar
  32. Karlsson A, Ayala R (2003) Tipificación mineralógica de tefras asociadas a diferentes sedimentos cuaternarios. Cuaternario y Geomorfología. Editorial Magna Publicaciones, pp 111–119Google Scholar
  33. Kemp JA, Zárate M, Toms P, King M, Sanabria JA, Argüello GL (2006) Late Quaternary paleosols, stratigraphy and landscape evolution in the Northern Pampas, Argentina. Q Res 66:119–132CrossRefGoogle Scholar
  34. Kraemer P, Tauber A, Schmidt T, Rame G (1993) Análisis cinemático de la falla de Nono. Evidencia de actividad neotectónica. Valle de San Alberto, Pcia de Córdoba. Actas del 12° Congreso Geológico Argentino y 2° Congreso de Exploración de Hidrocarburos Mendoza 3:277–281Google Scholar
  35. Lisé-Pronovost A, St-Onge G, Gogorza C, Haberzettl T, Preda M, Kliem P, Francus P, Zolitschka B (2013) High-resolution paleomagnetic secular variation and relative paleointensity since the Late Pleistocene in Southern South America. Q Sci Rev 71:91–108CrossRefGoogle Scholar
  36. Liu X, Rolph T, Bloemendal J, Shaw J, Liu TS (1995) Quantitative estimates of paleoprecipitation at Xinfeng, in the Loess Plateau of China. Palaeogeogr Palaeoclimatol Palaeoecol 13:243–248CrossRefGoogle Scholar
  37. Maher BA (1998) Magnetic properties of modern soils and Quaternary loessic paleosols: paleoclimatic implications. Palaeogeogr Palaeoclimatol Palaeoecol 137:25–54Google Scholar
  38. Maher BA, Thompson R (1995) Paleorainfall reconstructions from pedogenic magnetic susceptibility variations in the Chinese loess and paleosols. Q Res 44:383–391CrossRefGoogle Scholar
  39. Morin FJ (1950) Magnetic susceptibility of α-Fe2O3 and α-Fe2O3 with added titanium. J Phys 3:819–820Google Scholar
  40. Muhs DR, Zárate M (2001) Late Quaternary eolian records of the Americas and their paleoclimatic significance. In: Markgraf V (ed) Interhemispheric climate linkages. Academic press, San DiegoGoogle Scholar
  41. Oches E, Banerjee S (1996) Rock-magnetic proxies of climate change from loess–paleosol sediments of the Czech Republic. Stud Geophys Geod 40:287–300CrossRefGoogle Scholar
  42. Orgeira MJ, Compagnucci R (2006) Correlation between paleosol-soil magnetic signal and climate. Earth Planets Space, Special Issue “Paleomagnetism and Tectonics in Latinamerica” 58(10):1373–1380Google Scholar
  43. Orgeira MJ, Compagnucci RH (2010) Uso de la señal magnética de suelos y paleosuelos como función climática. Revista de la Asociación Geológica Argentina 65(4):612–623Google Scholar
  44. Orgeira MJ, Walther AM, Vasquez CA, Di Tommaso I, Alonso S, Sherwood G, Yuang Hu, Vilas JFA (1998) Mineral magnetic record of paleoclimate variation in loess and paleosol from the Buenos Aires formation (Buenos Aires, Argentina). J S Am Earth Sci 11(6):561–570CrossRefGoogle Scholar
  45. Orgeira MJ, Walther AM, Tófalo R, Vásquez CA, Lippai HF, Compagnucci R (2001) Estratigrafía y magnetismo de rocas en un perfil del arroyo Tapalqué, Cuaternario de la provincia de Buenos Aires: implicancias paleoambientales y paleoclimáticas. Revista de la Asociación Geológica Argentina 56(3):353–366Google Scholar
  46. Orgeira MJ, Walther AM, Tófalo R, Vásquez C, Berquó T, Favier Dubois C, Böhnel H (2002) Magnetismo ambiental en un paleosuelo desarrollado en la Fm Luján (Luján, Pcia. De Buenos Aires); consideraciones paleoclimáticas. Revista de la Asociación Geológica Argentina 57(4):451–462Google Scholar
  47. Orgeira MJ, Walther AM, Tófalo R, Vásquez CA, Berquó T, Favier Dubois C, Bhonel H (2003) Environmental magnetism in paleosoils developed in fluvial and loessic Holocene sediments from Chacopampean Plain (Argentina). J S Am Earth Sci 16:259–274CrossRefGoogle Scholar
  48. Orgeira MJ, Egli R, Compagnucci R (2011) A quantitative model of magnetic enhancement in loessic soils. In: (IAGA special Sopron book series) Earth magnetic interior, vol 25. Springer, pp 361–368Google Scholar
  49. Porta Casanellas J, Lopez-Acevedo Reguerin M, Roquero de Laburu C (2003) Edafología para la agricultura y el ambiente. Ediciones Mundi-Prensa, MadridGoogle Scholar
  50. Rouzaut S, Orgeira MJ, Vásquez C, Argüello GL, Sanabria J (2012) Magnetic properties in a loess–paleosol sequence of Córdoba, Argentina. Revista de la Sociedad Geológica de España 25(1–2):55–63Google Scholar
  51. Rouzaut S, Orgeira MJ, Bachmeier O. Propiedades magnéticas en suelos cultivados (in preparation) Google Scholar
  52. Sanabria J, Argüello GL, Moretti L (2006) Implicancia Paleoambiental de los paleosuelos de un sector de la Llanura Pampeana de Córdoba. Argentina, resumen publicado en el Taller de Cuaternario del XX Congreso Argentino de la Ciencia del Suelo, SaltaGoogle Scholar
  53. Schiavo HF, Becker AR, Cantú, MP (1995) Caracterización y génesis de los fragipanes de la depresión Curapaligüe. Dpto. Sáenz Peña, Córdoba. Argentina. Suplemento IDIA 33:659–673Google Scholar
  54. Teruggi ME (1957) The nature and origin of the Argentinean loess. J Sediment Petrol 27:322–332Google Scholar
  55. Vásquez-Castro G, Ortega-Guerrero B, Rodríguez M, García S (2008) Mineralogía magnética como indicador de sequía en los sedimentos lacustres de los últimos 2600 años de Santa María de Oro, México. Revista Mexicana de Ciencias Geológicas 25(1):21–38Google Scholar
  56. Verwey EJ, Haayman PW, Romeijn FC (1947) Physical properties and cation arrangements of oxides with spinel structure. J Chem Phys 15:181–187CrossRefGoogle Scholar
  57. Walther AM, Orgeira MJ, Lippai HF (2004) Magnetismo de rocas en sedimentos cenozoicos tardíos en San Antonio de Areco provincia de Buenos Aires. Revista de la Asociación Geológica Argentina 59(3):433–442Google Scholar
  58. Zárate MA (2003) Loess of southern South America. Q Sci Rev 2:1987–2006CrossRefGoogle Scholar
  59. Zárate M, Blasi A (1993) Late Pleistocene–Holocene eolian deposits of the southern Buenos Aires province, Argentina: a preliminary model. Q Int 17:15–20CrossRefGoogle Scholar
  60. Zárate M, Tripaldi A (2011) The aeolian system of central Argentina. Aeolian Res 3(4):401–417CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • S. Rouzaut
    • 1
    • 8
    Email author
  • M. J. Orgeira
    • 2
  • C. Vásquez
    • 2
  • R. Ayala
    • 3
  • G. L. Argüello
    • 4
  • A. Tauber
    • 5
  • R. Tófalo
    • 6
  • L. Mansilla
    • 7
  • J. Sanabria
    • 8
  1. 1.Becaria CONICETCórdobaArgentina
  2. 2.Dpto. Ciencias Geológicas, FCEN, UBA, IGEBACiudad Universitaria Pab. IINuñez, Buenos AiresArgentina
  3. 3.Cátedra de Mineralogía e Industrias Extractivas, Métodos de Investigación Mineral y Laboratorio VaqueríasUNCCórdobaArgentina
  4. 4.Ejercicio libre de la profesiónCórdobaArgentina
  5. 5.Cátedra de Paleontología, Escuela de GeologíaF.C.E.F.y N. UNCCórdobaArgentina
  6. 6.Dpto. Ciencias Geológicas, FCEN, UBA, IDEANCiudad Universitaria – Pab. IIBuenos AiresArgentina
  7. 7.Cátedra de Geomorfología, Escuela de GeologíaF.C.E.F.y N. UNCCórdobaArgentina
  8. 8.Cátedra de Pedología, Escuela de GeologíaF.C.E.F.y N. UNCCórdobaArgentina

Personalised recommendations