Advertisement

TESSIN VISLab—laboratory for scientific visualization

Abstract

Scientific visualization is an integral part of the modeling workflow, enabling researchers to understand complex or large data sets and simulation results. A high-resolution stereoscopic virtual reality (VR) environment further enhances the possibilities of visualization. Such an environment also allows collaboration in work groups including people of different backgrounds and to present results of research projects to stakeholders or the public. The requirements for the computing equipment driving the VR environment demand specialized software applications which can be run in a parallel fashion on a set of interconnected machines. Another challenge is to devise a useful data workflow from source data sets onto the display system. Therefore, we develop software applications like the OpenGeoSys Data Explorer, custom data conversion tools for established visualization packages such as ParaView and Visualization Toolkit as well as presentation and interaction techniques for 3D applications like Unity. We demonstrate our workflow by presenting visualization results for case studies from a broad range of applications. An outlook on how visualization techniques can be deeply integrated into the simulation process is given and future technical improvements such as a simplified hardware setup are outlined.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

References

  1. Alkan M, Keeba A, Yamankaradeniz N (2013) Exergoeconomic analysis of a district heating system for geothermal energy using specific exergy cost method. Energy 60:426–434. doi:10.1016/j.energy.2013.08.017

  2. Autodesk: VRED - 3D Visualization Software. http://www.autodesk.com/products/vred/overview. Accessed: 15-Jul-2014

  3. Barco ClickShare wireless presentation system. http://www.barco.com/clickshare. Accessed: 08-Aug-2014

  4. Beinhorn M, Dietrich P, Kolditz O (2005) 3-D numerical evaluation of density effects on tracer tests. J Contam Hydrol 81(1–4):89–105

  5. Bilke L (2009) Prozedurale Erzeugung von Modellen für die interaktive Visualisierung von Stadtgebieten der Gründerzeit. Master’s thesis, Hochschule für Technik, Wirtschaft und Kultur Leipzig (FH), Fachbereich Informatik, Mathematik und Naturwissenschaften. https://www.intranet.ufz.de/export/data/1/61741_Master_Lars-Bilke.pdf

  6. Bilke L (2014) Simple Seismic Reader. doi:10.5281/zenodo.10509. https://github.com/ufz-vislab/SimpleSeismicReader

  7. Bilke L (2013–2014)VtkFbxConverter. doi:10.5281/zenodo.10159. https://github.com/ufz-vislab/VtkFbxConverter

  8. Bilke L (2012–2014) VtkOsgConverter. doi:10.5281/zenodo.10161. https://github.com/ufz-vislab/VtkOsgConverter

  9. Blöcher MG, Zimmermann G, Moeck I et al (2010) 3D numerical modeling of hydrothermal processes during the lifetime of a deep geothermal reservoir. Geofluids 10(3):406–421. doi:10.1111/j.1468-8123.2010.00284.x

  10. Bryson S (1996) Virtual reality in scientific visualization. Commun ACM 39(5):62–71. doi:10.1145/229459.229467

  11. Burdea GC, Coiffet P (2003) Virtual reality technology, 2nd edn. Wiley-IEEE Press

  12. Childs H, Geveci B, Schroeder W et al (2013) Research challenges for visualization software. Computer 46(5):34–42. doi:10.1109/MC.2013.179

  13. Cook P (2014) Geologically storing carbon: learning from the Otway Project experience. CSIRO Publishing, Melbourne. ISBN 978-1-118-98618-9

  14. Ebert DS, Musgrave FK, Peachey D et al (1998) Texturing and modelling—a procedural approach, 2nd edn. Academic Press, San Diego, USA

  15. Elbe Dom—Fraunhofer IFF. http://www.iff.fraunhofer.de/en/laboratories/elbe-dom.html. Accessed 22 Aug 2014

  16. EnvirVis-EuroVis 2013. http://www.eurovis2013.de/content/envirvis.. Accessed 22-Aug-2014

  17. Foursa M (2004) Real-time infrared tracking system for virtual environments. In: Proceedings of the 2004 ACM SIGGRAPH international conference on virtual reality continuum and its applications in industry, VRCAI ’04, ACM, pp 427–430 doi:10.1145/1044588.1044681

  18. GOCAD by Paradigm. http://www.pdgm.com/products/godcad.. Accessed 19-Sep-2014

  19. Goldstone W (2011) Unity 3.x Game development essentials, 2nd edn. Packt Publishing. http://unitybook.net

  20. Gräbe A, Rödiger T, Rink K et al (2012) Development of a regional groundwater flow model along the western Dead Sea escarpment. In: Models-repositories of knowledge, pp 345–350. IAHS Redbook #355 (2012). ISBN:978-190716134-6

  21. Gräbe A, Rödinger T, Rink K et al (2013) Numerical analysis of the groundwater regime in the western Dead Sea Escarpment, Israel + West Bank. Environ Earth Sci 69(2):571–585. doi:10.1007/s12665-012-1795-8

  22. Grathwohl P, Rügner H, Wöhling T et al (2013) Catchments as reactors: a comprehensive approach for water fluxes and solute turn-over. Environ Earth Sci 69(2):317–333. doi:10.1007/s12665-013-2281-7

  23. Haehnlein S, Grathwohl P, Blum P, Bayer P (2011) Oberflächennahe Geothermie aktuelle rechtliche Situation in Deutschland. Grundwasser 16:69–75. doi:10.1007/s00767-011-0162-0

  24. Haehnlein S, Bayer P, Ferguson G et al (2013) Sustainability and policy for the thermal use of shallow geothermal energy. Energy Policy 59:914–925. doi:10.1016/j.enpol.2013.04.040

  25. Helbig C, Bauer HS, Rink K et al (2014) Concept and workflow for 3D visualization of atmospheric data in a virtual reality environment for analytical approaches.Environ Earth Sci. doi:10.1007/s12665-014-3136-6

  26. Henderson A, Ahrens J, Law C (2004) The paraView guide, 1th edn. Kitware, Inc

  27. i’m in VR: MiddleVR. http://www.imin-vr.com/middlevr/. Accessed 15-Jul-2014

  28. Johnson A, Leigh J (2001) Tele-Immersive collaboration in the CAVE Research Network. In: Churchill EF, Snowdon DN, Munro AJ (eds) Collaborative virtual environments, computer supported cooperative work. Springer, London, pp 225–243. doi:10.1007/978-1-4471-0685-2

  29. Jorke H, Fritz M (2006) Stereo projection using interference filters. Proc SPIE 6055, 60,550G–60,550G–8. doi:10.1117/12.650348

  30. Kalbus E, Kalbacher T, Kolditz O et al (2011) Integrated Water Resources Management under different hydrological, climatic and socio-economic conditions. Environ Earth Sci 65(5):1363–1366. doi:10.1007/s12665-011-1330-3

  31. KAUST visualization core lab. http://kvl.kaust.edu.sa/Pages/Showcase.aspx. Accessed 08 Aug 2014

  32. Kempka T, Class H, Görke UJ, Norden B, Kolditz O, Kühn M, Walter L, Wang W, Zehner B (2013) A dynamic flow simulation code intercomparison based on the revised static model of the Ketzin Pilot Site. Energy Proc 40:418–427. doi:10.1016/j.egypro.2013.08.048

  33. Köhler P, Ditzer T, Huth A (2000) Concepts for the aggregation of tropical tree species into functional types and the application on Sabah’s dipterocarp lowland rain forests. J Tropical Ecol 16:591–602

  34. Köhler P, Huth A (2004) Simulating growth dynamics in a South-East Asian rainforest threatened by recruitment shortage and tree harvesting. Clim Change 67:95–117

  35. Kolditz O, Diersch HJ (1993) Quasi-steady-state strategy for numerical simulation of geothermal circulation in hot dry rock fractures. Int J Non-Linear Mech 28(4):467–481

  36. Kolditz O, De Jonge J (2004) Non-isothermal two-phase flow in low-permeable porous media. Comput Mech 33(5):345–364

  37. Kolditz O, Bauer S, Bilke L et al (2012) OpenGeoSys: an open source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environ Earth Sci 67:589–599. doi:10.1007/s12665-012-1546-x

  38. Kolditz O, Bauer S, Beyer C et al (2012) A systematic benchmarking approach for geologic \({\text {CO}}_{2}\) injection and storage. Environ Earth Sci 67(2):613–632. doi:10.1007/s12665-012-1656-5

  39. Krause P, Kralisch S (2005) The hydrological modeling system J2000 knowledge core for JAMS. In: MODSIM 2005 international congress on modelling and simulation, pp 676–682 (2005)

  40. Krause P (ed) (2001) Das hydrologische modellsystem J2000, vol 29. Forschungszentrum Jülich, Umwelt/Environment

  41. Krawczyk C, Tanner D, Henk A et al (2014) Seismic and sub-seismic deformation prediction in the context of geological carbon trapping and storage. Springer, Berlin

  42. Lipton L (1990) Large-screen electro-stereoscopic displays. Proc SPIE 1255:108–113. doi:10.1117/12.19874

  43. McDermott C, Randriamanjatosoa A, Tenzer H et al (2006) Simulation of heat extraction from crystalline rocks: the influence of coupled processes on differential reservoir cooling. Geothermics 35(3):321–344

  44. Mechdyne Corporation (2014) Conduit—real-time digital prototyping. http://www.mechdyne.com/conduit.aspx. Accessed 15 Jul 2014

  45. Mont Terri Project. http://www.mont-terri.ch. Accessed 22-Sep-2014

  46. Müller P, Wonka P, Haegler S et al (2006) Procedural modeling of buildings. ACM Trans Graph 25(3):614–623. doi:10.1145/1141911.1141931

  47. Nagel T, Shao H, Singh A et al (2013) Non-equilibrium thermochemical heat storage in porous media: Part 1 - Conceptual model. Energy 60:254–270. doi:10.1016/j.energy.2013.06.025

  48. Naumov D (2014) Settle dynamics–a sedimentation process simulator. http://www.naumov.de/settle3D. Accessed 01-Aug-2014

  49. Naumov D, Bilke L, Kolditz O (2014) Rendering technique of multi-layered domain boundaries and its application to fluid flow in porous media visualizations. Environ Earth Sci. doi:10.1007/s12665-014-3445-9

  50. Oculus R (2014) Virtual reality headset for 3D gaming. http://www.oculusvr.com. Accessed 15 Jul 2014

  51. OpendTect-Free Open-source Seismic Intepretation Software System. http://opendtect.org. Accessed 15-Jul-2014

  52. OpenFOAM. http://www.openfoam.org. Accessed 16-Jul-2014

  53. OpenGeoSys-Documentation. http://docs.opengeosys.org/. Accessed 22-Aug-2014

  54. Pan Y, Birdsey R, Fang J et al (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993

  55. Qt Project. http://qt-project.org. Accessed 17-Sep-2014

  56. Rink K, Kalbacher T, Kolditz O (2012) Visual data exploration for hydrological analysis. Environ Earth Sci 65(5):1395–1403. doi:10.1007/s12665-011-1230-6

  57. Rink K, Fischer T, Selle B et al (2013) A data exploration framework for validation and setup of hydrological models.Environ Earth Sci 69(2):469–477. doi:10.1007/s12665-012-2030-3

  58. Rink K, Bilke L, Kolditz O (2014) Visualisation strategies for environmental modelling data. Environ Earth Sci. doi:10.1007/s12665-013-2970-2

  59. Rinke K, Kuehn B, Bocaniov S et al (2013) Reservoirs as sentinels of catchments: the Rappbode Reservoir Observatory (Harz Mountains, Germany). Environ Earth Sci 69:523–536. doi:10.1007/s12665-014-3445-9

  60. Roth M (2005) Parallele Bildberechnung in einem Netzwerk von Workstations. Ph.D. thesis, Technischen Universität Darmstadt

  61. Schmidt C, Musolff A, Trauth N et al (2012) Transient analysis of fluctuations of electrical conductivity as tracer in the stream bed. Hydrol Earth Syst Sci 16:3689–3697. doi:10.5194/hess-16-3689-2012

  62. Schroeder W, Martin K, Lorensen B (2006) Visualization toolkit: an object-oriented approach to 3D graphics, 4th edn. Kitware, Inc.

  63. Selle B, Rink K, Kolditz O (2013) Recharge and discharge controls on groundwater travel times and flow paths to production wells for the Ammer catchment in SW Germany. Environ Earth Sci 69(2):443–452. doi:10.1007/s12665-013-2281-7

  64. Seymour NE, Gallagher AG, Roman SA (2002) Virtual reality training improves operating room performance. Ann Surg 236(4):458–464

  65. Shao H, Dmytrieva S, Kolditz O et al (2009) Modeling reactive transport in non-ideal aqueous-solid solution system. Appl Geochem 24(7):1287–1300

  66. Shao H, Nagel T, Roßkopf C et al (2013) Non-equilibrium thermo-chemical heat storage in porous media: part 2—a 1D computational model for a calcium hydroxide reaction system. Energy 60:271–282. doi:10.1016/j.energy.2013.07.063

  67. Siebert C, Rödiger T, Mallast U et al (2014) Challenges to estimate surface- and groundwater flow in arid regions: the Dead Sea catchment. Sci Total Environ 485–486:828–841. doi:10.1016/j.scitotenv.2014.04.010

  68. Singh A, Goerke UJ, Kolditz O (2011) Numerical simulation of non-isothermal compositional gas flow: application to carbon dioxide injection into gas reservoirs. Energy 36(5):3446–3458

  69. Sun F, Shao H, Wang W et al (2012) Groundwater deterioration in Nankou – a suburban area of Beijing: data assessment and remediation scenarios. Environ Earth Sci 67(6):1573–1586. doi:10.1007/s12665-012-1600-8

  70. TechViz XL (2014) http://www.techviz.net/products/techviz-xl-driver/. Accessed 15 Jul 2014

  71. ParaView Catalyst User’s Guide v1.0. http://www.paraview.org/Wiki/images/4/48/CatalystUsersGuide.pdf. Accessed 15-Jul-2014

  72. Trauth N, Schmidt C, Maier U et al (2013) Coupled 3D stream flow and hyporheic flow model under varying stream and ambient groundwater flow conditions in a pool-riffle system. Water Resour Res. doi:10.1002/wrcr.20442

  73. Unity-Game engine, tools and multiplatform. http://unity3d.com/unity. Accessed 15-Jul-2014

  74. Vienken T, Schelenz S, Rink K et al (2014) Sustainable intensive thermal use of the shallow subsurface—a critical view on the status Quo. Groundwater. doi:10.1111/gwat.12206

  75. Virtual Reality—RWTH Aachen University. http://www.itc.rwth-aachen.de/cms/IT-Center/Forschung-Projekte/eubl/Virtuelle-Realitaet/lidx/1/. Accessed 22 Aug 2014

  76. Walther M, Böttcher N, Liedl R (2012) A 3D interpolation algorithm for layered tilted geological formations using an adapted inverse distance weighting approach. In: ModelCare 2011, Models—repositories of knowledge, pp 119–126. ISBN:978-1-907161-34-6

  77. Walther M, Delfs JO, Grundmann J et al (2012) Saltwater intrusion modeling: Verification and application to an agricultural coastal arid region in Oman. J Comput App Math 236(18):4798–4809. doi:10.1016/j.cam.2012.02.008

  78. Walther M, Bilke L, Delfs JO et al (2014) Assessing the saltwater remediation potential of a three-dimensional, heterogeneous, coastal aquifer system. Environ Earth Sci. doi:10.1007/s12665-014-3253-2

  79. Wang W, Fischer T, Zehner B et al (2014) A parallel finite element method for two-phase flow processes in porous media: OpenGeoSys with PETSc. Environ Earth Sci. doi:10.1007/s12665-014-3576-z

  80. Watanabe N, Wang W, McDermott C et al (2010) Uncertainty analysis of thermo-hydro-mechanical coupled processes in heterogeneous porous media. Comput Mech 45(4):263–280

  81. Weill Cornel Medical College 3D CAVE. http://bit.ly/1wgWkwg. Accessed 22 Aug 2014

  82. Xie M, Bauer S, Kolditz O et al (2006) Numerical simulation of reactive processes in an experiment with partially saturated bentonite. J Contam Hydrol 83(1–2):122–147

  83. Zacharias S, Bogena H, Samaniego L et al (2011) A network of terrestrial environmental observatories in Germany. Vadose Zone J 10(3):955–973

  84. Zehner B (2010) Mixing virtual reality and 2D visualization—using virtual environments as visual 3D Information systems for discussion of data from geo- and environmental sciences. In: Richard P, Braz J, Hilton A (eds) GRAPP 2010—Proceedings of the International Conference on Computer Graphics Theory and Applications, Angers, France, May 17–21, pp 364–369. INSTICC Press

  85. Zehner B (2011) Constructing geometric models of the subsurface for finite element simulation. In: Conference of the International Association of Mathematical Geosciences 2011, Salzburg, Austria (2011). doi:10.5242/iamg.2011.0069

  86. Zehner B (2010) Interactive Wind Park planning in a visualization center—giving control to the user. In: Buhmann E, Pietsch M, Kretzler E (eds) Peer reviewed proceedings of digital landscape architecture 2010. Wichmann Verlag, pp 287–294

  87. Zehner B (2008) Landscape visualization in high resolution stereoscopic visualization environments. In: Buhmann E, Pietsch M, Heins M (eds) Digital design in landscape architecture 2008, conference proceedings. Wichmann Verlag, pp 224–231

  88. Zehner B, Watanabe N, Kolditz O (2010) Visualization of gridded scalar data with uncertainty in geosciences. Computers and Geosciences 36:1268–1275. doi:10.1016/j.cageo.2010.02.010

  89. ZieschJ, Aruffo C, Tanner D et al (2014) Geological structure of the CO2CRC Otway Project site, Australia: fault kinematics based on quantitative 3D seismic interpretation. Basin Research. Submitted

  90. Zimmermann G, Reinicke A (2010) Hydraulic stimulation of a deep sandstone reservoir to develop an Enhanced Geothermal System: Laboratory and field experiments. Geothermics 39(1):70–77. doi:10.1016/j.geothermics.2009.12.003

Download references

Acknowledgments

The intention of this work is a compilation of case studies which have been carried out in the visualization laboratory TESSIN VISLab over the last years comprising different disciplines in environmental sciences. The authors would like to thank Thomas Kalbacher, Karsten Rinke, Benny Selle, Feng Sun and Nico Trauth for providing some of the data sets presented in the case studies. We thank Leslie Jakobs for the improvement of the manuscript concerning clarity and language. We acknowledge the participation of the following departments of the Helmholtz Centre for Environmental Research—UFZ in supporting several interdisciplinary case study visualizations: Catchment Hydrology (CATHYD), Computational Hydrosystems (CHS), Hydrogeology (HDG), Groundwater Remediation (GWS), Monitoring and Exploration Technologies (MET), Ecosystem Analysis (OESA) and Lake Research (SEEFO). We are very grateful to our external cooperation partners for data provision and fruitful discussion to improve visualization as a practical and useful tool for applied research, Federal Institute for Geosciences and Natural Resources (BGR), German Research Centre for Geosciences (GFZ), Leipzig University of Applied Sciences (HTWK), Leibniz Institute for Applied Geosciences (LIAG), University of Leipzig, Technische Universität Dresden, Technische Universität Freiberg. This work was sponsored in part by the Australian Commonwealth Government through the Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC). PROTECT is funded through the “Geotechnologien” Programme (Grant 03G0797). We acknowledge the support by the NUMTHECHSTORE project in cooperation with the Institute of Chemical Technology, University Leipzig, and the EWI2 project in cooperation with the Institute of Technical Thermodynamics, German Aerospace Center (DLR). Further acknowledgements to particular project funding are referred to in the individual papers cited for the case studies presented in this article.

Author information

Correspondence to Lars Bilke.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bilke, L., Fischer, T., Helbig, C. et al. TESSIN VISLab—laboratory for scientific visualization. Environ Earth Sci 72, 3881–3899 (2014). https://doi.org/10.1007/s12665-014-3785-5

Download citation

Keywords

  • Virtual reality
  • Visualization
  • Computer graphics
  • Data exploration
  • Hydrological processes
  • Geotechnics
  • Seismic data
  • OpenGeoSys
  • VISLAB