Advertisement

Environmental Earth Sciences

, Volume 73, Issue 8, pp 4373–4384 | Cite as

Anomalous fluid properties of carbon dioxide in the supercritical region: application to geological CO2 storage and related hazards

  • A. R. Imre
  • C. Ramboz
  • U. K. Deiters
  • T. Kraska
Original Article

Abstract

For supercritical fluids there is a wedge-shaped region called Widom region, where several physico-chemical quantities (e.g. compressibility, heat capacities, density, thermal expansivity, speed of sound) show anomalous behaviour. In this paper, several Widom lines of supercritical CO2 have been computed with the Wagner–Span reference equation of state. The locations of the Widom lines are compared with the PT range of the Snøhvit, Sleipner, Nagaoka and Ketzin reservoirs, which are recently studied for their fitness for CO2 sequestration, and two natural CO2 storage analogues, Montmiral in France and Mihályi-Répcelak in Hungary. The potential consequences of leaking CO2 crossing any of the Widom lines are discussed.

Keywords

Carbon sequestration CCS Widom line 

Notes

Acknowledgments

A. R. Imre gratefully acknowledges an “Albert’s reunion Grant” from the University of Cologne and an invitation as a guest professor at the University of Orléans for 2 months. This work could not have been completed without the support of these two Universities.

References

  1. Al-Fattah SM, Barghouty MF, Dabbousi BO (2011) Carbon capture and storage: technologies, policies, economics, and implementation strategies, CRC, Boca Raton, Ch. 5Google Scholar
  2. Alnes H, Eiken O, Stenvold T (2008) Monitoring gas production and CO2 injection at the Sleipner field using time-lapse gravimetry. Geophysics 73:155–161CrossRefGoogle Scholar
  3. Arts R, Chadwick A, Eiken O, Thibeau S, Nooner S (2008) Ten years’ experience of monitoring CO2 injection in the Utsira Sand at Sleipner, offshore Norway. First Break 26:65–72Google Scholar
  4. Bachu S (2000) Sequestration of CO2 in geological media: criteria and approach for site selection in response to climate change. Energy Convers Manag 41:953–970CrossRefGoogle Scholar
  5. Baklid A, Korbøl R, Owren G (1996) Sleipner Vest CO2 disposal, CO2 injection into a shallow underground aquifer. Society of Petroleum Engineers (SPE), paper 36600Google Scholar
  6. Benintendi R (2014) Non-equilibrium phenomena in carbon dioxide expansion. Process Saf Environ Prot 92:47–59CrossRefGoogle Scholar
  7. Bickle M, Chadwick A, Huppert HE, Hallworth M, Lyle S (2007) Modelling carbon dioxide accumulation at Sleipner: implications for underground carbon storage. Earth Planet Sci Lett 255:164–176CrossRefGoogle Scholar
  8. Brazhkin VV, Ryzhov VN (2011) Van der Waals supercritical fluid: exact formulas for special lines. J Chem Phys 135:084503CrossRefGoogle Scholar
  9. Brazhkin VV, Fomin YuD, Lyapin AG, Ryzhov VN, Tsiok EN (2011) Widom line for the liquid–gas transition in Lennard-Jones system. J Phys Chem B 115:14112–14115CrossRefGoogle Scholar
  10. Brazhkin VV, Fomin YuD, Lyapin AG, Ryzhov VN, Trachenko K (2012) Universal crossover of liquid dynamics in supercritical region. JETP Lett 95:164–169CrossRefGoogle Scholar
  11. Brazhkin VV, Fomin YuD, Ryzhov VN, Tareyeva EE, Tsiok EN (2014) True Widom line for a square-well system. Phys Rev E 89:042136Google Scholar
  12. Cs Király, Szamosfalvi Á, Falus Gy, Szabó Cs, Sendula E (2013) Expected physical and chemical effects of injecting industrial carbon dioxide on pore fluids and reservoir rocks based on the study of Mihályi-Répcelak natural CO2 occurrence. Magy Geofiz (in Hungarian with English abstract) 54:43–52Google Scholar
  13. Debenedetti PG (1996) Metastable liquids: concepts and principles. Princeton University Press, PrincetonGoogle Scholar
  14. Deiters UK (2006) ThermoC. http://thermoc.uni-koeln.de/index.html
  15. Edlmann K, Haszeldine S, McDermott C (2013) Experimental investigation into the sealing capability of naturally fractured shale caprocks to supercritical carbon dioxide flow. Environ Earth Sci 70:3393–3409CrossRefGoogle Scholar
  16. Eshiet K, Sheng Y (2014) Investigation of geomechanical responses of reservoirs induced by carbon dioxide storage. Environ Earth Sci 71:3999–4020CrossRefGoogle Scholar
  17. Estrada-Alexanders AF, Trusler JPM (1998) Speed of sound in carbon dioxide at temperatures between (220 and 450) K and pressures up to 14 MPa. J Chem Thermodyn 30:1589–1601CrossRefGoogle Scholar
  18. Gonzalez-Nicieza C, Alvarez-Fernandez MI, Prendes-Gero MB, Pizarro-Garcia C, Oliva-Gonzalez AO (2014) An experiment-based assessment of the feasibility of the CO2 geological storage in unexploited coal beds in northern Spain. Environ Earth Sci 71:3673–3684CrossRefGoogle Scholar
  19. Han DH, Sun M, Batzle M (2010) CO2 velocity measurement and models for temperatures up to 200 & #xB0;C and pressures up to 100 MPa. Geophysics 75:E123–E129CrossRefGoogle Scholar
  20. Han WH, Kim K-Y, Choung S, Jeong J, Jung N-H, Park E (2014) Non-parametric simulations-based conditional stochastic predictions of geologic heterogeneities and leakage potentials for hypothetical CO2 sequestration sites. Environ Earth Sci 71:2739–2752CrossRefGoogle Scholar
  21. Hansen O, Eiken O, Østmo S, Johansen RI, Smith A (2011) Monitoring CO2 injection into a fluvial brine-filled sandstone formation at the Snøhvit field, Barents Sea. Society of Exploration Geophysicists—Expanded Abstract, No. SEG-2011-4092Google Scholar
  22. Hansen O, Gilding D, Nazarian B, Osdal B, Ringros P, Kristoffersen J-B, Eiken O, Hansen H (2013) Snøhvit: the history of injecting and storing 1 Mt CO2 in the fluvial Tubåen Fm. Energy Procedia 37:356–3573CrossRefGoogle Scholar
  23. Hepple RP, Benson SM (2003) Implications of surface seepage on the effectiveness of geological storage of carbon dioxide as a climate change mitigation strategy. In: Gale J, Kaya Y (eds) Greenhouse gas technologies, 1. Elsevier, Amsterdam, pp 261–266Google Scholar
  24. Imre AR, Tiselj I (2012) Reduction of fluid property errors of various thermohydraulic codes for supercritical water systems. Kerntechnik 77:18–24Google Scholar
  25. Imre AR, Maris HJ, Williams PR (eds) (2002) Liquids under negative pressure. NATO Science Series, KluwerGoogle Scholar
  26. Imre AR, Deiters UK, Kraska T, Tiselj I (2012) The pseudocritical regions for supercritical water. Nucl Eng Des 252:179–183CrossRefGoogle Scholar
  27. Imre AR, Baranyai A, Deiters UK, Kiss PT, Kraska T, Quiñones-Cisneros SE (2013) Estimation of the thermodynamic limit of overheating for bulk water from interfacial properties. Int J Thermophys 34:2053–2064CrossRefGoogle Scholar
  28. Kempka T, Kühn M (2013) Numerical simulations of CO2 arrival times and reservoir pressure coincide with observations from the Ketzin pilot site, Germany. Environ Earth Sci 70:3675–3685CrossRefGoogle Scholar
  29. Kikuta K, Hongo S, Tanase D, Ohsumi T (2005) Field test of CO2 injection in Nagaoka, Japan. In: Proceedings of the 7th Intl. Conf. on Greenhouse Gas Control Technologies, pp 1367–1372Google Scholar
  30. Kraska T, Römer F, Imre AR (2009) The relation of interface properties and bulk phase stability: MD simulations of carbon dioxide. J Phys Chem B 113:4688–4697CrossRefGoogle Scholar
  31. Leneindre B, Tufeu R, Bury B, Sengers JV (1973) Thermal conductivity of carbon dioxide and steam in the supercritical region. Ber Bunsenges Phys Chem 77:262–275Google Scholar
  32. Loizzo M, Henninges J, Zimmer M, Liebscher A (2013) Multi-phase equilibrium in a CO2-filled observation well at the Ketzin pilot site. Energy Procedia 37:3621–3629CrossRefGoogle Scholar
  33. May H-O, Mausbach P (2012) Riemannian geometry study of vapor–liquid phase equilibria and supercritical behavior of the Lennard-Jones fluid. Phys Rev E 85:031201CrossRefGoogle Scholar
  34. McMillan PF, Stanley HE (2010) Going supercritical. Nat Phys 6:479–480CrossRefGoogle Scholar
  35. Miles N, Davis K, Wyngaard J (2005) Detecting leakage from CO2 reservoirs using micrometeorological methods. In: Thomas DC, Benson SM (eds) Carbon dioxide capture for storage in deep geologic formations—results from the CO2 capture program. 2: geologic storage of carbon dioxide with monitoring and verification. Elsevier Science, London, pp 1031–1044Google Scholar
  36. NASCENT Report (2005) Natural analogues for the geological storage of CO2. No. 2005/6. (British Geological Survey)Google Scholar
  37. NIST Chemistry Webbook (2011). http://webbook.nist.gov/chemistry/
  38. Novak K, Malvić T, Simon K (2013) Increased hydrocarbon recovery and CO2 management, a Croatian example. Environ Earth Sci 68:1187–1197CrossRefGoogle Scholar
  39. Novak K, Malvić T, Velić J, Simon K (2014) Increased hydrocarbon recovery and CO2 storage in Neogene sandstones, a Croatian example: part II. Environ Earth Sci 71:3641–3653CrossRefGoogle Scholar
  40. Oschwald M, Smith JJ, Branam R, Hussong J, Schik A, Chehroudi B, Talley D (2006) Injection of fluids into supercritical environments. Combust Sci Technol 178:49–100CrossRefGoogle Scholar
  41. Pártay LB, Jedlovszky P, Brovchenko I, Oleinikova A (2007) Percolation transition in supercritical water: a Monte Carlo simulation study. J Phys Chem B 26:7603–7609Google Scholar
  42. Pruess K (2008) On CO2 fluid flow and heat transfer behavior in the subsurface, following leakage from a geologic storage reservoir. Environ Geol 54:1677–1686. doi: 10.1007/s00254-007-0945-x CrossRefGoogle Scholar
  43. Ringrose P, Eiken O (2011) Sleipner and Snøhvit projects. CSLF Interactive Workshop, Saudi Arabia, 01–02 March 2011, Carbon Sequestration Leadership ForumGoogle Scholar
  44. Schulz FT, Glawe C, Schmidt H, Kerstein AR (2013) Toward modeling of CO2 multi-phase flow patterns using a stochastic multi-scale approach. Environ Earth Sci 70:3739–3748CrossRefGoogle Scholar
  45. Simeoni GG, Bryk T, Gorelli FA, Krisch M, Ruocco G, Santoro M, Scopigno T (2010) The Widom line as the crossover between liquid-like and gas-like behaviour in supercritical fluids. Nat Phys 6:503–507CrossRefGoogle Scholar
  46. Skripov VP (1974) Metastable liquids. Wiley, New YorkGoogle Scholar
  47. Span R, Wagner W (1996) A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1000 K at pressures up to 800 MPa. J Phys Chem Ref Data 25:1509–1596CrossRefGoogle Scholar
  48. Suehiro Y, Nakajima M, Yamada K, Uematsu M (1996) Critical parameters of x CO2 + (1 − x) CHF3 for x = (1.0000, 0.7496, 0.5013, and 0.2522). J Chem Thermodyn 28:1153–1164CrossRefGoogle Scholar
  49. Thiéry R (1996) A new object-oriented library for calculating analytically high-order multivariable derivatives and thermodynamic properties of fluids with equations of state. Comput Geosci 22:801–815CrossRefGoogle Scholar
  50. Trevena DH (1987) Cavitation and tension in liquids. Adam Hilger, BristolGoogle Scholar
  51. Wang Z, Nur A (1989) Effect of CO2 flooding on wave velocities in rocks with hydrocarbons. SPE Reserv Eng 3:429–436CrossRefGoogle Scholar
  52. Wiese B, Zimmer M, Nowak M, Pellizzari L, Pilz P (2013) Well-based hydraulic and geochemical monitoring of the above zone of the CO2 reservoir at Ketzin, Germany. Environ Earth Sci 70:3709–3726CrossRefGoogle Scholar
  53. Wilday J, Bilio M (2014) Safety issues for carbon capture and storage. Process Saf Environ Prot 92:1–2CrossRefGoogle Scholar
  54. Xiang H-W, Deiters UK (2008) A new generalized corresponding-states equation of state for the extension of the Lee-Kesler equation to fluids consisting of polar and larger nonpolar molecules. Chem Eng Sci 63:1490–1496CrossRefGoogle Scholar
  55. Xu L, Kumar P, Buldyrev SV, Chen SH, Poole PH, Sciortino F, Stanley HE (2005) Relation between the Widom line and the dynamic crossover in systems with a liquid–liquid phase transition. Proc Natl Acad Sci USA 102:16558–16562CrossRefGoogle Scholar
  56. Zhong L, Cantrell K, Mitroshkov A, Shewell J (2014) Mobilization and transport of organic compounds from reservoir rock and caprock in geological carbon sequestration sites. Environ Earth Sci 71:4261–4272CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • A. R. Imre
    • 1
    • 2
    • 3
  • C. Ramboz
    • 2
    • 4
    • 5
  • U. K. Deiters
    • 3
  • T. Kraska
    • 3
  1. 1.Thermohydraulics Department, MTA Centre for Energy ResearchBudapestHungary
  2. 2.Université d’Orleans, ISTO, UMR 7327OrléansFrance
  3. 3.University Cologne, Institute of Physical ChemistryCologneGermany
  4. 4.CNRS, ISTO, UMR 7327OrléansFrance
  5. 5.BRGM, ISTO, UMR 7327OrléansFrance

Personalised recommendations