Advertisement

Environmental Earth Sciences

, Volume 73, Issue 1, pp 449–465 | Cite as

Carbon dioxide, water and energy fluxes of irrigated broad-acre crops in an Australian semi-arid climate zone

  • Camilla Vote
  • Andrew Hall
  • Philip Charlton
Original Article

Abstract

The response of the carbon and hydrological cycles of irrigated agro-ecosystems in semi-arid regions to changes in temperature and increasing levels of atmospheric carbon dioxide concentrations is unclear. Furthermore, the extent to which these systems contribute to the carbon cycle as net sources or sinks of carbon dioxide remains relatively unknown. In this study, eddy covariance methodologies were employed to quantify mass and energy exchange of maize, rice and wheat grown in an Australian semi-arid irrigation-dependent agricultural region. It was found that there was a distinct seasonal difference in the magnitude of energy balance components. The latent heat exchange observed during the summer growing season was almost twice that observed during winter. Irrigation management practices significantly influenced the distribution of turbulent fluxes. Over the permanently flooded rice crop, the energy balance was predominately driven by latent heat flux, which accounted for ~99 % of the energy balance. For the crops irrigated intermittently (i.e. maize and wheat), latent heat flux represented ~80 % of the energy balance. In addition, all three crops acted as a net carbon sink over the growing season. The rate of carbon assimilation was impacted by the nature of the photosynthetic pathway of the plant and seasonality. Maize, a C4 plant, exhibited the greatest capacity for carbon uptake (−1,327 g C/m2) during the summer months, and winter wheat, a C3 plant, exhibited the least (−388 g C/m2).

Keywords

Eddy covariance Maize Rice Wheat Australia Irrigation Water Carbon 

Notes

Acknowledgments

Financial support for this study was provided via the Coleambally Water Smart Australia project, commissioned by the National Water Commission of Australia. The authors would like to thank Mohsin Hafeez for the opportunity to explore this study, Rolf Faux for his assistance with instrument deployment and data collection; James Cleverly, Peter Isaac and Ray Leuning for their time and instruction of data processing techniques and quality control procedures; the landholders for unlimited access to their properties; other staff and students of the former International Centre of Water for Food Security who collated ancillary data; and Michael Wilson and Austin Evans of CICL who provided access to crop water use information for the CIA.

References

  1. Alberto MCR, Wassmann R, Hirano T, Miyata A, Kumar A, Padre A, Amante M (2009) CO2/heat fluxes in rice fields: comparative assessment of flooded and non-flooded fields in the Philippines. Agric For Meteorol 149(10):1737–1750. doi: 10.1016/j.agrformet.2009.06.003 CrossRefGoogle Scholar
  2. Alberto MCR, Wassmann R, Hirano T, Miyata A, Hatano R, Kumar A, Padre A, Amante M (2011) Comparisons of energy balance and evapotranspiration between flooded and aerobic rice fields in the Philippines. Agric Water Manag 98(9):1417–1430. doi: 10.1016/j.agwat.2011.04.011 CrossRefGoogle Scholar
  3. Alfieri JG, Kustas WP, Prueger JH, Hipps LE, Evett SR, Basara JB, Neale CMU, French AN, Colaizzi P, Agam N, Cosh MH, Chavez JL, Howell TA (2012) On the discrepancy between eddy covariance and lysimetry-based surface flux measurements under strongly advective conditions. Ad Water Resour 50:62–78. doi: 10.1016/j.advwatres.2012.07.008 CrossRefGoogle Scholar
  4. Allen RG, Pereira LS, Raes D, Smith M (1988) Crop evapotranspiration—Guidelines for computing crop water requirements. FAO Irrigation and drainage paper, vol 300Google Scholar
  5. Australian Bureau of Statistics (2012a) Gross value of irrigated agricultural production, 2010–2011. CanberraGoogle Scholar
  6. Australian Bureau of Statistics (2012b) Value of agricultural commodities produced, Australia, 2010–2011. CanberraGoogle Scholar
  7. Australian Bureau of Statistics (2012c) Water account Australia: 2010–2011. CanberraGoogle Scholar
  8. Baldocchi D (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biol 9(4):479–492. doi: 10.1046/j.1365-2486.2003.00629.x CrossRefGoogle Scholar
  9. Baldocchi D, Falge E, Gu LH, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer C, Davis K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee XH, Malhi Y, Meyers T, Munger W, Oechel W, KTP U, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2001) FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Am Meteorol Soc 82(11):2415–2434CrossRefGoogle Scholar
  10. Brutsaert W (1982) Evaporation into the atmosphere: theory, history, and applications, Environmental Fluid Mechanics, vol 1. D. Reidel Publishing Co., DordrechtCrossRefGoogle Scholar
  11. Burba GG (2013) Eddy covariance method for scientific, industrial, agricultural, and regulatory applications, LI-COR biosciences. Lincoln, NebraksaGoogle Scholar
  12. Burba GG, Anderson DJ (2010) A brief practical guide to Eddy covariance flux measurements: principles and workflow examples for scientific and industrial applications LI-COR biosciences. Lincoln, USAGoogle Scholar
  13. Bureau of Meteorology (2005) Australian climate zones—major classification groups. Commonwealth of Australia. http://www.bom.gov.au/climate/environ/other/kpn_group.shtml. Accessed 9 Jul 2010
  14. Bureau of Meteorology (2012) Climate statistics for Australian locations—Griffith Airport AWS 075041. http://www.bom.gov.au/climate/averages/tables/cw_075041.shtml. Accessed 18 Apr 2012
  15. Coleambally Irrigation Cooperative Ltd (2010) Annual Compliance Report 2010Google Scholar
  16. Coleambally Irrigation Cooperative Ltd (2011) Annual Compliance Report 2011Google Scholar
  17. De Datta SK (1987) Principles and practices of rice production. Krieger, MalabarGoogle Scholar
  18. Department of Climate Change and Energy Efficiency (2011) Australian National Greenhouse Accounts: National Inventory Report 2009. vol 2Google Scholar
  19. Domingo F, Serrano-Ortiz P, Were A, Villagarcía L, García M, Ramírez DA, Kowalski AS, Moro MJ, Rey A, Oyonarte C (2011) Carbon and water exchange in semiarid ecosystems in SE Spain. J Arid Environ 75(12):1271–1281. doi: 10.1016/j.jaridenv.2011.06.018 CrossRefGoogle Scholar
  20. Edraki M, Smith D, Humphreys E, Khan S, O’Connell N, Xevi E (2003) Validation of the SWAGMAN Farm and SWAGMAN Destiny models. Technical Report. CSIRO Land and Water, Griffith, NSW, AustraliaGoogle Scholar
  21. Evans GN (1971) Evaporation from rice at griffith, New South Wales. Agric Meteorol 8:117–127. doi: 10.1016/0002-1571(71)90101-4
  22. Evrendilek F, Karakaya N, Aslan G, Ertekin C (2011) Using Eddy covariance sensors to quantify carbon metabolism of Peatlands: a case study in Turkey. Sensors 11(1):522–538CrossRefGoogle Scholar
  23. Falge E, Baldocchi D, Olson R, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H, Granier A, Gross P, Grünwald T, Hollinger D, Jensen N-O, Katul G, Keronen P, Kowalski A, Lai CT, Law BE, Meyers T, Moncrieff J, Moors E, Munger JW, Pilegaard K, Rannik Ü, Rebmann C, Suyker A, Tenhunen J, Tu K, Verma S, Vesala T, Wilson K, Wofsy S (2001) Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric For Meteorol 107(1):43–69CrossRefGoogle Scholar
  24. Falge E, Baldocchi D, Tenhunen J, Aubinet M, Bakwin P, Berbigier P, Bernhofer C, Burba G, Clement R, Davis KJ, Elbers JA, Goldstein AH, Grelle A, Granier A, Guðmundsson J, Hollinger D, Kowalski AS, Katul G, Law BE, Malhi Y, Meyers T, Monson RK, Munger JW, Oechel W, Paw UKT, Pilegaard K, Rannik Ü, Rebmann C, Suyker A, Valentini R, Wilson K, Wofsy S (2002) Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agric For Meteorol 113(1–4):53–74  10.1016/S0168-1923(02)00102-8 CrossRefGoogle Scholar
  25. Foken T, Wimmer F, Mauder M, Thomas C, Liebethal C (2006) Some aspects of the energy balance closure problem. Atmos Chem Phys 6(12):4395–4402. doi: 10.5194/acp-6-4395-2006 CrossRefGoogle Scholar
  26. Foken T, Mauder M, Liebethal C, Wimmer F, Beyrich F, Leps J-P, Raasch S, DeBruin H, Meijninger W, Bange J (2010) Energy balance closure for the LITFASS-2003 experiment. Theor Appl Climatol 101:149–160Google Scholar
  27. Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309(5734):570–574. doi: 10.1126/science.1111772 CrossRefGoogle Scholar
  28. Gilmanov TG, Aires L, Barcza Z, Baron VS, Belelli L, Beringer J, Billesbach D, Bonal D, Bradford J, Ceschia E, Cook D, Corradi C, Frank A, Gianelle D, Gimeno C, Gruenwald T, Guo H, Hanan N, Haszpra L, Heilman J, Jacobs A, Jones MB, Johnson DA, Kiely G, Li S, Magliulo V, Moors E, Nagy Z, Nasyrov M, Owensby C, Pinter K, Pio C, Reichstein M, Sanz MJ, Scott R, Soussana JF, Stoy PC, Svejcar T, Tuba Z, Zhou G (2010) Productivity, respiration, and light-response parameters of world grassland and agroecosystems derived from flux-tower measurements. Rangel Ecol Manag 63(1):16–39. doi: 10.2111/rem-d-09-00072.1 CrossRefGoogle Scholar
  29. Goulden ML, McMillan AMS, Winston GC, Rocha AV, Manies KL, Harden JW, Bond-Lamberty BP (2011) Patterns of NPP, GPP, respiration, and NEP during boreal forest succession. Global Change Biol 17(2):855–871. doi: 10.1111/j.1365-2486.2010.02274.x CrossRefGoogle Scholar
  30. Hatala JA, Detto M, Sonnentag O, Deverel SJ, Verfaillie J, Baldocchi DD (2012) Greenhouse gas (CO2, CH4, H2O) fluxes from drained and flooded agricultural peatlands in the Sacramento-San Joaquin Delta. Agric Ecosyst Environ 150:1–18. doi: 10.1016/j.agee.2012.01.009 CrossRefGoogle Scholar
  31. Humphreys E, Meyer W, Prathapar S, Smith D (1994) Estimation of evapotranspiration from rice in southern New South Wales: a review. Aust J Exp Agric 34(7):1069–1078. Doi: 10.1071/EA9941069 CrossRefGoogle Scholar
  32. Inagaki A, Letzel MO, Raasch S, Kanda M (2006) Impact of surface heterogeneity on energy imbalance: a study using LES. J Meteorol Soc Japan Ser II 84(1):187–198CrossRefGoogle Scholar
  33. Intergovernmental Panel on Climate Change (2007) Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, SwitzerlandGoogle Scholar
  34. Isaac P, Cleverly J (2011) OzFlux QC. 1.5 edn. CSIRO, Canberra, AustraliaGoogle Scholar
  35. Jackson TM, Khan S, Hafeez M (2010) A comparative analysis of water application and energy consumption at the irrigated field level. Agric Water Manag 97(10):1477–1485. doi: 10.1016/j.agwat.2010.04.013 CrossRefGoogle Scholar
  36. Jans WWP, Jacobs CMJ, Kruijt B, Elbers JA, Barendse S, Moors EJ (2010) Carbon exchange of a maize (Zea mays L.) crop: influence of phenology. Agric Ecosyst Environ 139(3):316–324. doi: 10.1016/j.agee.2010.06.008 CrossRefGoogle Scholar
  37. Kalfas JL, Xiao X, Vanegas DX, Verma SB, Suyker AE (2011) Modelling gross primary production of irrigated and rain-fed maize using MODIS imagery and CO2 flux tower data. Agric For Meteorol 151(12):1514–1528Google Scholar
  38. Kanniah KD, Beringer J, Hutley LB (2011) Environmental controls on the spatial variability of savanna productivity in the Northern Territory, Australia. Agric For Meteorol 151(11):1429–1439. doi: 10.1016/j.agrformet.2011.06.009 CrossRefGoogle Scholar
  39. Kennedy RA (1976) Photosynthesis and photorespiration in C3 and C4 plant-tissue cultures—significance of Kranz anatomy to operation of C4 pathway. Plant Physiol 57(5):53Google Scholar
  40. Khan S, Hanjra MA (2009) Footprints of water and energy inputs in food production—global perspectives. Food Policy 34(2):130–140CrossRefGoogle Scholar
  41. Kilinc M, Beringer J, Hutley LB, Haverd V, Tapper N (2012) An analysis of the surface energy budget above the world’s tallest angiosperm forest. Agric For Meteorol 166–167(0):23–31. Doi: 10.1016/j.agrformet.2012.05.014 CrossRefGoogle Scholar
  42. Kirschbaum MUF, Saggar S, Tate KR, Thakur KP, Giltrap DL (2013) Quantifying the climate-change consequences of shifting land use between forest and agriculture. Sci Total Environ 465(0):314–324. Doi: 10.1016/j.scitotenv.2013.01.026 CrossRefGoogle Scholar
  43. Lara MV, Andreo CS (2011) C4 plants adaptation to high levels of CO2 and to drought environments. In: Shanker A, Venkateswarlu B (eds) Abiotic stress in plants—mechanisms and adaptations. InTech. doi: 10.5772/24936
  44. Lee X, Law B, Massman W (2004) Handbook of micrometeorology: a guide for surface flux measurement and analysis. Springer, NetherlandsGoogle Scholar
  45. Leuning R (2004) Measurements of trace gas fluxes in the atmosphere using eddy covariance: WPL corrections revisited. In: Lee X, Massman WJ, Law B (eds) Handbook of micrometeorology: a guide for surface flux measurement and analysis. Springer, Netherlands, pp 119–132Google Scholar
  46. Leuning R, Cleugh HA, Zegelin SJ, Hughes D (2005) Carbon and water fluxes over a temperate eucalyptus forest and a tropical wet/dry savanna in Australia: measurements and comparison with MODIS remote sensing estimates. Agric For Meteorol 129(3–4):151–173CrossRefGoogle Scholar
  47. Lloyd J, Taylor JA (1994) On the temperature dependence of soil respiration. Funct Ecol 8(3):315–323CrossRefGoogle Scholar
  48. Loescher HW, Law BE, Mahrt L, Hollinger DY, Campbell J, Wofsy SC (2006) Uncertainties in, and interpretation of, carbon flux estimates using the eddy covariance technique. J Geophys Res Atmos 111(D21). doi: 10.1029/2005jd006932
  49. Long KD (2008) Methane fluxes from a northern peatland: mechanisms controlling diurnal and seasonal variation and the magnitude of aerobic methanogensis. University of Lethbridge, LethbridgeGoogle Scholar
  50. Massman WJ (2000) A simple method for estimating frequency response corrections for eddy covariance systems. Agric For Meteorol 104(3):185–198Google Scholar
  51. Massman WJ (2001) Reply to comment by Rannik on "A simple method for estimating frequency response corrections for eddy covariance system". Agric For Meteorol 107(3):247–251. doi: 10.1016/S0168-1923(00)00237-9
  52. Massman WJ, Clement R (2004) Uncertainty in eddy covariance flux estimates resulting from spectral attenuation. In: Lee X, Massman W, Law B (eds) Handbook of micrometeorology: a guide for surface flux measurement and analysis. Springer, Netherlands, pp 67–99Google Scholar
  53. McVicar T, Van Niel T (2012) Coleambally: an agricultural time series site. CSIRO. http://www.eoc.csiro.au/hswww/oz_pi/colly_site/key.htm. Accessed 26 Jul 2012
  54. Meyer WS, Smith DJ, Shell G (1999) Estimating reference evaporation and crop evapotranspiration from weather data and crop coefficients: An addendum to AWRAC Research Project 84/162—Quantifying components of the water balance under irrigated crops. Technical Report. CSIRO Land and Water, Griffith, NSW, AustraliaGoogle Scholar
  55. Moffat AM, Papale D, Reichstein M, Hollinger DY, Richardson AD, Barr AG, Beckstein C, Braswell BH, Churkina G, Desai AR, Falge E, Gove JH, Heimann M, Hui DF, Jarvis AJ, Kattge J, Noormets A, Stauch VJ (2007) Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes. Agric For Meteorol 147(3–4):209–232. doi: 10.1016/j.agrformet.2007.08.011 CrossRefGoogle Scholar
  56. Moncrieff J, Clement R, Finnigan J, Meyers T (2004) Averaging, Detrending, and Filtering of Eddy Covariance Time Series. In: Lee X, Massman W, Law B (eds) Handbook of Micrometeorology, vol 29. Atmospheric and Oceanographic Sciences Library. Springer, Netherlands, pp 7–31. doi: 10.1007/1-4020-2265-4_2
  57. Murrumbidgee Irrigation Ltd (2013) Rice water use in the murrumbidgee irrigation area. http://www.mirrigation.com.au/Customers/Rice-Water-Use-Targets. Accessed 25 Mar 2013
  58. Neftel A, Spirig C, Ammann C (2008) Application and test of a simple tool for operational footprint evaluations. Environ Pollut 152(3):644–652CrossRefGoogle Scholar
  59. Oncley SP, Foken T, Vogt R, Kohsiek W, DeBruin HAR, Bernhofer C, Christen A, van Gorsel E, Grantz D, Feigenwinter C, Lehner I, Liebethal C, Liu H, Mauder M, Pitacco A, Ribeiro L, Weidinger T (2007) The energy balance experiment EBEX-2000. Part I: overview and energy balance. Bound Layer Meteorol 123(1):1–28CrossRefGoogle Scholar
  60. Ramankutty N, Evan AT, Monfreda C, Foley JA (2008) Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochem Cycles 22(1):GB1003. doi: 10.1029/2007gb002952 Google Scholar
  61. Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grunwald T, Havrankova K, Ilvesniemi H, Janous D, Knohl A, Laurila T, Lohila A, Loustau D, Matteucci G, Meyers T, Miglietta F, Ourcival J-M, Pumpanen J, Rambal S, Rotenberg E, Sanz M, Tenhunen J, Seufert G, Vaccari F, Vesala T, Yakir D, Valentini R (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biol 11(9):1424–1439 citeulike-article-id:299299CrossRefGoogle Scholar
  62. Rossini M, Cogliati S, Meroni M, Migliavacca M, Galvagno M, Busetto L, Cremonese E, Julitta T, Siniscalco C, Morra di Cella U, Colombo R (2012) Remote sensing-based estimation of gross primary production in a subalpine grassland. Biogeosciences 9(7):2565–2584. doi: 10.5194/bg-9-2565-2012 CrossRefGoogle Scholar
  63. Saito M, Miyata A, Nagai H, Yamada T (2005) Seasonal variation of carbon dioxide exchange in rice paddy field in Japan. Agric For Meteorol 135(1–4):93–109. doi: 10.1016/j.agrformet.2005.10.007 CrossRefGoogle Scholar
  64. Scott RL, Huxman TE, Cable WL, Emmerich WE (2006) Partitioning of evapotranspiration and its relation to carbon dioxide exchange in a Chihuahuan Desert shrubland. Hydrol Process 20(15):3227–3243. doi: 10.1002/hyp.6329 CrossRefGoogle Scholar
  65. Scott RL, Serrano-Ortiz P, Domingo F, Hamerlynck EP, Kowalski AS (2012) Commonalities of carbon dioxide exchange in semiarid regions with monsoon and Mediterranean climates. J Arid Environ 84:71–79. doi: 10.1016/j.jaridenv.2012.03.017 CrossRefGoogle Scholar
  66. Spiertz H (2012) Avenues to meet food security. The role of agronomy on solving complexity in food production and resource use. Eur J Agron 43:1–8. doi: 10.1016/j.eja.2012.04.004 CrossRefGoogle Scholar
  67. Steduto P, Hsiao TC, Fereres E (2007) On the conservative behavior of biomass water productivity. Irrig Sci 25(3):189–207. doi: 10.1007/s00271-007-0064-1 CrossRefGoogle Scholar
  68. Stoy PC, Mauder M, Foken T, Marcolla B, Boegh E, Ibrom A, Arain MA, Arneth A, Aurela M, Bernhofer C, Cescatti A, Dellwik E, Duce P, Gianelle D, van Gorsel E, Kiely G, Knohl A, Margolis H, McCaughey H, Merbold L, Montagnani L, Papale D, Reichstein M, Saunders M, Serrano-Ortiz P, Sottocornola M, Spano D, Vaccari F, Varlagin A (2013) A data-driven analysis of energy balance closure across FLUXNET research sites: The role of landscape scale heterogeneity. Agric For Meteorol 171–172(0):137–152. Doi: 10.1016/j.agrformet.2012.11.004 CrossRefGoogle Scholar
  69. Suyker AE, Verma SB (2010) Coupling of carbon dioxide and water vapor exchanges of irrigated and rainfed maize-soybean cropping systems and water productivity. Agric For Meteorol 150(4):553–563CrossRefGoogle Scholar
  70. Suyker AE, Verma SB, Burba GG, Arkebauer TJ (2005) Gross primary production and ecosystem respiration of irrigated maize and irrigated soybean during a growing season. Agric For Meteorol 131(3–4):180–190. doi: 10.1016/j.agrformet.2005.05.007 CrossRefGoogle Scholar
  71. The World Bank (2007) World Development Report 2008: Agriculture for Development. The World Bank, Washington, DCGoogle Scholar
  72. Tsai J-L, Tsuang B-J, Lu P-S, Yao M-H, Yuan S (2007) Surface energy components and land characteristics of a rice paddy, vol 46. vol 11. American Meteorological Society, Boston, MA, USAGoogle Scholar
  73. Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water vapour transfer. Quart J Roy Meteorol Soc 106(447):85–100. doi: 10.1002/qj.49710644707
  74. Wilson KB, Baldocchi DD, Aubinet M, Berbigier P, Bernhofer C, Dolman H, Falge E, Field C, Goldstein A, Granier A, Grelle A, Halldor T, Hollinger D, Katul G, Law BE, Lindroth A, Meyers T, Moncrieff J, Monson R, Oechel W, Tenhunen J, Valentini R, Verma S, Vesala T, Wofsy S (2002) Energy partitioning between latent and sensible heat flux during the warm season at FLUXNET sites. Water Resour Res 38(12):30-1–30-11. doi: 10.1029/2001wr000989
  75. Wohlfahrt G, Bahn M, Haslwanter A, Newesely C, Cernusca A (2005) Estimation of daytime ecosystem respiration to determine gross primary production of a mountain meadow. Agric For Meteorol 130(1–2):13–25. doi: 10.1016/j.agrformet.2005.02.001 CrossRefGoogle Scholar
  76. Yu Q, Wu W, Yang P, Li Z, Xiong W, Tang H (2012) Proposing an interdisciplinary and cross-scale framework for global change and food security researches. Agric Ecosyst Environ 156:57–71. doi: 10.1016/j.agee.2012.04.026 CrossRefGoogle Scholar
  77. Zhang Z, Jiang H, Liu J, Weimin J, Xiuying Z (2013) Effect of heterogeneous atmospheric CO2 on simulated global carbon budget. Glob Planet Chang. doi: 10.1016/j.gloplacha.2012.12.002

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of Environmental SciencesCharles Sturt UniversityWagga WaggaAustralia
  2. 2.Institute for Land, Water and SocietyCharles Sturt UniversityAlburyAustralia
  3. 3.School of Computing and MathematicsCharles Sturt UniversityWagga WaggaAustralia

Personalised recommendations