Environmental Earth Sciences

, Volume 73, Issue 4, pp 1479–1490 | Cite as

Niche-based projections of wetlands shifts with marine intrusion from sea level rise: an example analysis for North Carolina

  • A. Townsend PetersonEmail author
  • Xingong Li
Original Article


Climate change is affecting world systems in many ways, of which one important dimension is sea level rise. This implication, however, has not heretofore been incorporated powerfully in analyses of biodiversity consequences of climate change, for lack of effective means of (1) modeling the degree and extent of marine intrusion into terrestrial habitats, and (2) anticipating dispersal-mediated shifts in natural systems (species, ecosystems, etc.). In this paper, recent developments in modeling marine intrusion over complex coastal landscapes are integrated with an adaptation of ecological niche modeling for estimating ‘niches’ of natural systems to anticipate sea level rise effects on them in an appropriate biological framework. This novel series of steps is illustrated with a worked example of wetlands systems and associated species and communities along the coast of North Carolina, but the methodology is novel for anticipating sea level rise-mediated shifts in vegetation types in many coastal systems.


Sea level rise Wetlands North Carolina Digital elevation models Ecological niche models 



Keith French and Chris Dobbs prepared the datasets for analysis. This research was supported by a Grant (DE-FC02-06ER64298) from the US Department of Energy through the National Institute for Climatic Change Research—Coastal Center at Tulane University.


  1. Anderson RP, Lew D, Peterson AT (2003) Evaluating predictive models of species’ distributions: criteria for selecting optimal models. Ecol Model 162:211–232CrossRefGoogle Scholar
  2. Arens SM, Slings QL, Geelen LH, Van der Hagen HG (2013) Restoration of dune mobility in the Netherlands. In: Restoration of Coastal Dunes. Springer, pp 107–124Google Scholar
  3. Bedford BL (1996) The need to define hydrologic equivalence at the landscape scale for freshwater wetland mitigation. Ecol Appl 6:57–68. doi: 10.2307/2269552 CrossRefGoogle Scholar
  4. Craft C, Clough J, Ehman J, Joye S, Park R, Pennings S, Guo H, Machmuller M (2009) Forecasting the effects of accelerated sea-level rise on tidal marsh ecosystem services. Front Ecol Environ 7:73–78. doi: 10.1890/070219 CrossRefGoogle Scholar
  5. Day JW, Boesch DF, Clairain EJ, Kemp GP, Laska SB, Mitsch WJ, Orth K, Mashriqui H, Reed DJ, Shabman L, Simenstad CA, Streever BJ, Twilley RR, Watson CC, Wells JT, Whigham DF (2007) Restoration of the Mississippi Delta: lessons from hurricanes Katrina and Rita. Science 315:1679–1684. doi: 10.1126/science.1137030 CrossRefGoogle Scholar
  6. Elith J, Graham C, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loisell BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton J, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire E, Soberón J, Williams S, Wisz MS, Zimmerman NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151CrossRefGoogle Scholar
  7. Gehrels R, Long A (2008) Sea level is not level: the case for a new approach to predicting UK sea-level rise. Geography 93:11–16Google Scholar
  8. Grinsted A, Moore J, Jevrejeva S (2010) Reconstructing sea level from paleo and projected temperatures 200 to 2,100. Clim Dyn 34:461–472. doi: 10.1007/s00382-008-0507-2 CrossRefGoogle Scholar
  9. Hopkinson CS, Lugo AE, Alber M, Covich AP, Van Bloem SJ (2008) Forecasting effects of sea-level rise and windstorms on coastal and inland ecosystems. Front Ecol Environ 6:255–263. doi: 10.1890/070153 CrossRefGoogle Scholar
  10. Horton R, Herweijer C, Rosenzweig C, Liu J, Gornitz V, Ruane AC (2008) Sea level rise projections for current generation CGCMs based on the semi-empirical method. Geophys Res Lett 35:L02715. doi: 10.1029/2007gl032486 CrossRefGoogle Scholar
  11. IPCC (2013) Climate change 2013: the physical science basis. Cambridge University Press, CambridgeGoogle Scholar
  12. Islam MZ-u, Menon S, Li X, Peterson AT (2013) Forecasting ecological impacts of sea-level rise on coastal conservation areas in India. J Threat Taxa 5(9):4349–4358. doi: 10.11609/JoTT.o3163.4349-58
  13. Jevrejeva S, Moore JC, Grinsted A (2010) How will sea level respond to changes in natural and anthropogenic forcings by 2100? Geophys Res Lett 37:L07703CrossRefGoogle Scholar
  14. Kirwan M, Temmerman S (2009) Coastal marsh response to historical and future sea-level acceleration. Quat Sci Rev 28:1801–1808CrossRefGoogle Scholar
  15. Lee JK, Park RA, Mausel PW (1992) Application of geoprocessing and simulation modeling to estimate impacts of sea level rise on the northeast coast of Florida. Photogramm Eng Remote Sens 58:1579–1586Google Scholar
  16. Legra L, Li X, Peterson AT (2008) Biodiversity consequences of sea level rise in New Guinea. Pacif Conserv Biol 13:191–199Google Scholar
  17. Li X, Rowley RJ, Kostelnick JC, Braaten D, Meisel J, Hulbutta K (2009) GIS analysis of global inundation impacts from sea level rise. Photogramm Eng Remote Sens 75:807–818CrossRefGoogle Scholar
  18. Lobo JM, Jiménez-Valverde A, Real R (2008) AUC: a misleading measure of the performance of predictive distribution models. Glob Ecol Biogeogr 17:145–151. doi: 10.1111/j.1466-8238.2007.00358.x CrossRefGoogle Scholar
  19. Lovejoy TE, Hannah L (eds) (2005) Climate change and biodiversity. Yale University Press, New HavenGoogle Scholar
  20. McKee KL, Cahoon DR, Feller IC (2007) Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Glob Ecol Biogeogr 16(5):545–556. doi: 10.1111/j.1466-8238.2007.00317.x CrossRefGoogle Scholar
  21. Menon S, Z-u Islam, Peterson AT (2009) Projected climate change effects on nuthatch distribution and diversity across Asia. Raffles Bull Zool 57:569–575Google Scholar
  22. Menon S, Soberón J, Li X, Peterson AT (2010) Preliminary global assessment of terrestrial biodiversity consequences of sea level rise mediated by climate change. Biodivers Conserv 19:1599–1609CrossRefGoogle Scholar
  23. Mitrovica JX, Gomez N, Clark PU (2009) The sea-level fingerprint of west Antarctic collapse. Science 323:753. doi: 10.1126/science.1166510 CrossRefGoogle Scholar
  24. Morris JT, Sundareshwar PV, Nietch CT, Kjerfve B, Cahoon DR (2002) Responses of coastal wetlands to rising sea level. Ecology 83:2869–2877CrossRefGoogle Scholar
  25. NCCRC (2010) North Carolina sea-level rise assessment report. Science Panel on Coastal Hazards. North Carolina Coastal Resources Commission, RaleighGoogle Scholar
  26. Neubauer SC (2013) Ecosystem responses of a tidal freshwater marsh experiencing saltwater intrusion and altered hydrology. Estuaries Coasts 36:491–507CrossRefGoogle Scholar
  27. Pardaens A, Gregory J, Lowe J (2011) A model study of factors influencing projected changes in regional sea level over the twenty-first century. Clim Dyn 36:2015–2033. doi: 10.1007/s00382-009-0738-x CrossRefGoogle Scholar
  28. Pearson RG, Raxworthy CJ, Nakamura M, Peterson AT (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34:102–117CrossRefGoogle Scholar
  29. Peterson AT, Papeş M, Eaton M (2007) Transferability and model evaluation in ecological niche modeling: a comparison of GARP and Maxent. Ecography 30:550–560CrossRefGoogle Scholar
  30. Peterson AT, Papeş M, Soberón J (2008) Rethinking receiver operating characteristic analysis applications in ecological niche modelling. Ecol Model 213:63–72CrossRefGoogle Scholar
  31. Peterson AT, Li X, Navarro-Sigüenza AG (2010) Joint effects of marine intrusion and climate change on the Mexican avifauna. Ann Assoc Am Geogr 100:908–916CrossRefGoogle Scholar
  32. Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, Araújo MB (2011) Ecological niches and geographic distributions. Princeton University Press, PrincetonGoogle Scholar
  33. Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 21:161–175CrossRefGoogle Scholar
  34. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259CrossRefGoogle Scholar
  35. Rahmstorf S (2007) A semi-empirical approach to projecting future sea-level-rise. Science 315:368–370CrossRefGoogle Scholar
  36. Randin CF, Dirnbock T, Dullinger S, Zimmermann NE, Zappa M, Guisan A (2006) Are niche-based species distribution models transferable in space? J Biogeogr 33(10):1689–1703. doi: 10.1111/j.1365-2699.2006.01466.x CrossRefGoogle Scholar
  37. Rignot E, Kanagaratnam P (2006) Changes in the velocity structure of the Greenland ice sheet. Science 311:986–990. doi: 10.1126/science.1121381 CrossRefGoogle Scholar
  38. Stockwell DRB, Peters DP (1999) The GARP modelling system: problems and solutions to automated spatial prediction. Int J Geogr Inf Sci 13:143–158CrossRefGoogle Scholar
  39. Thomas R, Rignot E, Casassa G, Kanagaratnam P, Acuna C, Akins T, Brecher H, Frederick E, Gogineni P, Krabill W, Manizade S, Ramamoorthy H, Rivera A, Russell R, Sonntag J, Swift R, Yungel J, Zwally J (2004) Accelerated sea-level rise from West Antarctica. Science 306:255–258. doi: 10.1126/science.1099650 CrossRefGoogle Scholar
  40. USFWS (2012) Endangered and Threatened Species of North Carolina; U.S. Fish and Wildlife Service, Raleigh Ecological Services Field Office, Raleigh
  41. Vermeer M, Rahmstorf S (2009) Global sea level linked to global temperature. Proc Natl Acad Sci 106:21527–21532CrossRefGoogle Scholar
  42. Virah-Sawmy M, Willis KJ, Gillson L (2009) Threshold response of Madagascar’s littoral forest to sea-level rise. Glob Ecol Biogeogr 18:98–110CrossRefGoogle Scholar
  43. Warren RS, Niering WA (1993) Vegetation change on a northeast tidal marsh: interaction of sea-level rise and marsh accretion. Ecology 74:96–103CrossRefGoogle Scholar
  44. Webb EL, Friess DA, Krauss KW, Cahoon DR, Guntenspergen GR, Phelps J (2013) A global standard for monitoring coastal wetland vulnerability to accelerated sea-level rise. Nat Clim Chang 3:458–465CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Biodiversity InstituteUniversity of KansasLawrenceUSA
  2. 2.Department of GeographyUniversity of KansasLawrenceUSA

Personalised recommendations