Environmental Earth Sciences

, Volume 72, Issue 12, pp 5183–5196 | Cite as

Estimation of land surface temperature from atmospherically corrected LANDSAT TM image using 6S and NCEP global reanalysis product

  • Prashant K. SrivastavaEmail author
  • Dawei Han
  • Miguel A. Rico-Ramirez
  • Michaela Bray
  • Tanvir Islam
  • Manika Gupta
  • Qiang Dai
Original Article


Water vapour is the most variable constituent in the atmosphere which is responsible for serious noise in the optical satellite images. This research is focused on the vertical distribution of water vapour and deducing its possible effects on the atmospheric correction process. The vertical distribution of precipitable water vapour, water vapour mixing ratio with geopotential height and pressure were estimated through the weather research and forecasting (WRF) model by downscaling the National Center for Environmental Prediction (NCEP) global reanalysis product. In addition, the most widely used LANDSAT TM satellite image has been used for this assessment. The WRF model was applied with three domains centred on a LANDSAT captured image over the area. The 6S atmospheric correction code was utilised for viewing the effect of precipitable water vapour on satellite image correction. The analysis was conducted on two pressure levels (1,000 and 100 hPa) representing the troposphere and stratosphere, respectively. The validation of the atmospheric correction has been performed by estimating the land surface temperature (LST) over the Walnut Creek region and its comparison with the Soil Moisture Experiments in 2002 (SMEX02) LST field validation datasets. The overall analyses indicate a higher accuracy of LST repossession with 100 hPa corrected image.


Precipitable water vapour Agricultural landscape Weather research and forecasting model (WRF) Land surface temperature (LST) 6S correction 



The authors would like to thank the Commonwealth Scholarship Commission, United Kingdom and Ministry of Human Resource Development, Government of India for providing the necessary support and funding for this research. The authors are also thankful to SMEX team for all the validation data generated during the experiments and Computational and Information Systems Laboratory (CISL) at the National Center for Atmospheric Research (NCAR) for the NCEP data. The authors also acknowledge the Advanced Computing Research Centre at University of Bristol for providing the access to supercomputer facility (The Blue Crystal). The views expressed here are those of the authors solely and do not constitute a statement of policy, decision, or position on behalf of NOAA/NASA or the authors’ affiliated institutions.


  1. Abdel Wahab M, Sharif T (1995) Estimation of precipitable water at different locations using surface dew-point. Theor Appl Climatol 51(3):153–157CrossRefGoogle Scholar
  2. Anderson GP, Chetwynd JH, Kneizys FX et al (1994) MODTRAN 3: suitability as a flux-divergence code. In: Proceedings of the 4th ARM-Science Team Meeting, pp 75–80Google Scholar
  3. Artis DA, Carnahan WH (1982) Survey of emissivity variability in thermography of urban areas. Remote Sens Environ 12(4):313–329CrossRefGoogle Scholar
  4. Bolton D (1980) The computation of equivalent potential temperature. Mon Weather Rev 108(7):1046–1053CrossRefGoogle Scholar
  5. Borge R, Alexandrov V, del Vas JJ, Lumbreras J, Rodriguez E (2008) A comprehensive sensitivity analysis of the WRF model for air quality applications over the Iberian Peninsula. Atmos Environ 42(37):8560–8574. doi: 10.1016/j.atmosenv.2008.08.032 CrossRefGoogle Scholar
  6. Carlson TN, Ripley DA (1997) On the relation between NDVI, fractional vegetation cover, and leaf area index* 1. Remote Sens Environ 62(3):241–252CrossRefGoogle Scholar
  7. Chen F, Dudhia J (2001) Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modelling system. Part I: model implementation and sensitivity. Mon Weather Rev 129(4):569–585CrossRefGoogle Scholar
  8. Etherton B, Santos P (2008) Sensitivity of WRF forecasts for South Florida to initial conditions. Weather Forecast 23(4):725–740CrossRefGoogle Scholar
  9. Fernandez LI, Salio P, Natali MP, Meza AM (2010) Estimation of precipitable water vapour from GPS measurements in Argentina: validation and qualitative analysis of results. Adv Space Res 46(7):879–894. doi: 10.1016/j.asr.2010.05.012 CrossRefGoogle Scholar
  10. Grell GA, Dudhia J, Stauffer DR (1994) A description of the fifth-generation Penn State/NCAR mesoscale model (MM5). NCAR Technical Note NCAR/TN-398STRGoogle Scholar
  11. Gupta M, Srivastava PK (2010) Integrating GIS and remote sensing for identification of groundwater potential zones in the hilly terrain of Pavagarh, Gujarat, India. Water Int 35(2):233–245CrossRefGoogle Scholar
  12. Holben BN (1986) Characteristics of maximum-value composite images from temporal Avhrr data. Int J Remote Sens 7(11):1417–1434CrossRefGoogle Scholar
  13. Ishak AM, Bray M, Remesan R, Han D (2010) Estimating reference evapotranspiration using numerical weather modelling. Hydrol Process 24(24):3490–3509CrossRefGoogle Scholar
  14. Ishak A, Remesan R, Srivastava P, Islam T, Han D (2013) Error correction modelling of wind speed through hydro-meteorological parameters and mesoscale model: a hybrid approach. Water Resour Manage 27(1):1–23. doi: 10.1007/s11269-012-0130-1 CrossRefGoogle Scholar
  15. Islam T, Rico-Ramirez M, Han D, Bray M, Srivastava P (2013) Fuzzy logic based melting layer recognition from 3 GHz dual polarization radar: appraisal with NWP model and radio sounding observations. Theoret Appl Climatol 112(1–2):317–338. doi: 10.1007/s00704-012-0721-z CrossRefGoogle Scholar
  16. Jade S, Vijayan MSM, Gaur VK, Prabhu TP, Sahu SC (2005) Estimates of precipitable water vapour from GPS data over the Indian subcontinent. J Atmos Sol-Terr Phys 67(6):623–635. doi: 10.1016/j.jastp.2004.12.010 CrossRefGoogle Scholar
  17. Jin S, Luo OF (2009) Variability and Climatology of PWV from global 13-year GPS observations. IEEE Trans Geosci Remote 47(7):1918–1924. doi: 10.1109/Tgrs.2008.2010401 CrossRefGoogle Scholar
  18. Jin SG, Luo OF, Cho J (2009) Systematic errors between VLBI and GPS precipitable water vapor estimations from 5-year co-located measurements. J Atmos Sol-Terr Phys 71(2):264–272. doi: 10.1016/j.jastp.2008.11.018 CrossRefGoogle Scholar
  19. Kaufman YJ, Sendra C (1988) Algorithm for automatic atmospheric corrections to visible and near-Ir satellite imagery. Int J Remote Sens 9(8):1357–1381CrossRefGoogle Scholar
  20. Kirk-Davidoff DB, Hintsa EJ, Anderson JG, Keith DW (1999) The effect of climate change on ozone depletion through changes in stratospheric water vapour. Nature 402(6760):399–401CrossRefGoogle Scholar
  21. Lu D, Mausel P, Brondizio E, Moran E (2002) Assessment of atmospheric correction methods for Landsat TM data applicable to Amazon basin LBA research. Int J Remote Sens 23(13):2651–2671CrossRefGoogle Scholar
  22. Mallick J, Singh CK, Shashtri S, Rahman A, Mukherjee S (2012) Land surface emissivity retrieval based on moisture index from LANDSAT TM satellite data over heterogeneous surfaces of Delhi city. Int J Appl Earth Obs Geoinf 19:348–358CrossRefGoogle Scholar
  23. Markham BL, Halthore RN, Goetz SJ (1992) Surface reflectance retrieval from satellite and aircraft sensors—results of sensor and algorithm comparisons during fife. J Geophys Res-Atmos 97(D17):18785–18795CrossRefGoogle Scholar
  24. Molders N, Kramm G (2010) A case study on wintertime inversions in Interior Alaska with WRF. Atmos Res 95(2–3):314–332. doi: 10.1016/j.atmosres.2009.06.002 CrossRefGoogle Scholar
  25. Moran M, Clarke T, Inoue Y, Vidal A (1994) Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sens Environ 49(3):246–263CrossRefGoogle Scholar
  26. Moran M, Jackson R, Clarke T, Qi J, Cabot F, Thome K, Markha B (1995) Reflectance factor retrieval from Landsat TM and SPOT HRV data for bright and dark targets. Remote Sens Environ 52(3):218–230CrossRefGoogle Scholar
  27. Mukherjee S, Shashtri S, Singh C, Srivastava PK, Gupta M (2009) Effect of canal on land use/land cover using remote sensing and GIS. J Indian Soc Remote Sens 37(3):527–537CrossRefGoogle Scholar
  28. Nemani RR, Running SW (1989) Estimation of regional surface-resistance to evapotranspiration from Ndvi and thermal-Ir Avhrr data. J Appl Meteorol 28(4):276–284CrossRefGoogle Scholar
  29. Pinty B, Verstraete M (1992) GEMI: a non-linear index to monitor global vegetation from satellites. Plant Ecol 101(1):15–20CrossRefGoogle Scholar
  30. Ristori P, Otero L, Fochesatto J, Flamant PH, Wolfram E, Quel E, Piacentini R, Holben B (2003) Aerosol optical properties measured in Argentina: wavelength dependence and variability based on sun photometer measurements. Opt Laser Eng 40(1–2):91–104 Pii S0143-8166(02)00057-XCrossRefGoogle Scholar
  31. Sandholt I, Rasmussen K, Andersen J (2002) A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sens Environ 79(2–3):213–224CrossRefGoogle Scholar
  32. Schneider K, Mauser W (1996) Processing and accuracy of Landsat thematic mapper data for lake surface temperature measurement. Int J Remote Sens 17(11):2027–2041CrossRefGoogle Scholar
  33. Sharma AR, Badarinath KVS, Roy PS (2009) Comparison of ground reflectance measurement with satellite derived atmospherically corrected reflectance: a case study over semi-arid landscape. Adv Space Res 43(1):56–64. doi: 10.1016/j.asr.2008.10.010 CrossRefGoogle Scholar
  34. Sobrino JA, Li ZL, Stoll MP, Becker F (1996) Multi-channel and multi-angle algorithms for estimating sea and land surface temperature with ATSR data. Int J Remote Sens 17(11):2089–2114CrossRefGoogle Scholar
  35. Sobrino JA, Raissouni N, Li ZL (2001) A comparative study of land surface emissivity retrieval from NOAA data. Remote Sens Environ 75(2):256–266CrossRefGoogle Scholar
  36. Sobrino JA, Jimenez-Munoz JC, Paolini L (2004) Land surface temperature retrieval from LANDSAT TM 5. Remote Sens Environ 90(4):434–440. doi: 10.1016/j.rse.2004.02.003 CrossRefGoogle Scholar
  37. Solomon S, Rosenlof KH, Portmann RW, Daniel JS, Davis SM, Sanford TJ, Plattner GK (2010) Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science 327(5970):1219–1223. doi: 10.1126/science.1182488 CrossRefGoogle Scholar
  38. Srivastava PK (2013) Soil moisture estimation from SMOS satellite and mesoscale model for hydrological applications. Ph.D. thesis, University of Bristol, Bristol. doi: 10.1002/asl.427
  39. Srivastava PK, Mukherjee S, Gupta M (2010) Impact of urbanization on land use/land cover change using remote sensing and GIS: a case study. Int J Ecol Econ Stat 18(S10):106–117Google Scholar
  40. Srivastava PK, Han D, Rico-Ramirez MA, Bray M, Islam T (2012) Selection of classification techniques for land use/land cover change investigation. Adv Space Res 50(9):1250–1265. doi: 10.1016/j.asr.2012.06.032 CrossRefGoogle Scholar
  41. Srivastava PK, Han D, Ramirez MR, Islam T (2013a) Machine learning techniques for downscaling SMOS satellite soil moisture using MODIS land surface temperature for hydrological application. Water Resour Manage 27(8):3127–3144CrossRefGoogle Scholar
  42. Srivastava PK, Han D, Rico-Ramirez MA, Al-Shrafany D, Islam T (2013b) Data Fusion techniques for improving soil moisture deficit using SMOS satellite and WRF-NOAH land surface model. Water Resour Manage 27(15):5069–5087Google Scholar
  43. Srivastava PK, Han D, Rico Ramirez M, Islam T (2013c) Sensitivity and Uncertainty analysis of Mesoscale model downscaled hydro-meteorological variables for discharge prediction. Hydrol Process. doi: 10.1002/hyp9946 Google Scholar
  44. Srivastava PK, Han D, Rico Ramirez MA, Islam T (2013d) Comparative assessment of evapotranspiration derived from NCEP and ECMWF global datasets through weather research and forecasting model. Atmos Sci Lett 14(2):118–125. doi: 10.1002/asl2.427 CrossRefGoogle Scholar
  45. Tachiiri K (2005) Calculating NDVI for NOAA/AVHRR data after atmospheric correction for extensive images using 6S code: a case study in the Marsabit District, Kenya. Isprs J Photogramm 59(3):103–114. doi: 10.1016/j.isprsjprs.2004.09.001 CrossRefGoogle Scholar
  46. Tanre D, Deroo C, Duhaut P, Herman M, Morcrette JJ, Perbos J, Deschamps PY (1990) Description of a computer code to simulate the satellite signal in the solar spectrum—the 5s code. Int J Remote Sens 11(4):659–668CrossRefGoogle Scholar
  47. Tanre D, Holben BN, Kaufman YJ (1992) Atmospheric correction against algorithm for NOAA-AVHRR products: theory and application. Geosci Remote Sens IEEE Trans 30(2):231–248CrossRefGoogle Scholar
  48. Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106(D7):7183–7192CrossRefGoogle Scholar
  49. Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8(2):127–150CrossRefGoogle Scholar
  50. Vermote EF, Saleous NZ (2006) Operational atmospheric correction of MODIS visible to middle infrared land surface data in the case of an infinite Lambertian target. Earth Sci Satell Remote Sens 1:123–153CrossRefGoogle Scholar
  51. Vermote EF, ElSaleous N, Justice CO, Kaufman YJ, Privette JL, Remer L, Roger JC, Tanre D (1997a) Atmospheric correction of visible to middle-infrared EOS-MODIS data over land surfaces: background, operational algorithm and validation. J Geophys Res-Atmos 102(D14):17131–17141CrossRefGoogle Scholar
  52. Vermote EF, Tanre D, Deuze JL, Herman M, Morcrette JJ (1997b) Second Simulation of the satellite signal in the solar spectrum, 6S: an overview. IEEE T Geosci Remote 35(3):675–686CrossRefGoogle Scholar
  53. Wang W, Seaman NL (1997) A comparison study of convective parameterization schemes in a mesoscale model. Mon Weather Rev 125(2):252–278CrossRefGoogle Scholar
  54. Weng Q, Lu D, Schubring J (2004) Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies. Remote Sens Environ 89(4):467–483CrossRefGoogle Scholar
  55. Yue W, Xu J, Tan W, Xu L (2007) The relationship between land surface temperature and NDVI with remote sensing: application to Shanghai Landsat 7 ETM+ data. Int J Remote Sens 28(15):3205–3226CrossRefGoogle Scholar
  56. Zhang J, Zhang XD (2010) A soil moisture assimilation scheme using satellite-retrieved skin temperature in meso-scale weather forecast model. Atmos Res 95(2–3):333–352. doi: 10.1016/j.atmosres.2009.09.003 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Prashant K. Srivastava
    • 1
    • 2
    • 3
    Email author
  • Dawei Han
    • 3
  • Miguel A. Rico-Ramirez
    • 3
  • Michaela Bray
    • 4
  • Tanvir Islam
    • 5
    • 6
    • 3
  • Manika Gupta
    • 7
  • Qiang Dai
    • 3
  1. 1.Hydrological SciencesNASA Goddard Space Flight CenterGreenbeltUSA
  2. 2.Earth System Science Interdisciplinary CenterUniversity of MarylandMarylandUSA
  3. 3.Department of Civil EngineeringUniversity of BristolBristolUK
  4. 4.Hydro-Environment Centre, Cardiff School of EngineeringCardiff UniversityCardiffUK
  5. 5.NOAA/NESDIS Center for Satellite Applications and ResearchCollege ParkUSA
  6. 6.Cooperative Institute for Research in the AtmosphereColorado State UniversityFort CollinsUSA
  7. 7.Department of Civil EngineeringIndian Institute of Technology (IIT)DelhiIndia

Personalised recommendations